



Abstract—This work is to design an accelerated SVM

(Support Vector Machine) which is suitable for Android

operating system. SVM is widely used in the health-related

applications. The SVM provides a potential classification

technology based on the pattern recognition method and

statistical learning theory. This paper proposes a parallel SVM

algorithm based on GPU accelerator. GPU can provide better

performance on matrix multiplication through parallelization

which is the main drawback of conventional SVM execution.

The cross validation function in the personal computer is

designed and improved, and SVM training function in the

mobile devices in addition. Through the above approach, the

influence of matrix calculation on the whole system can be

reduced to a certain extent. In the experiment of image

classification, compared to the serial SVM, the proposed

approach can achieve 3.3x speed up in the PC, and 1.5x speed up

in the mobile devices. But the accuracy rate is not greatly

improved both. Since the experiment mainly focuses on

improving the execution time, no optimization is considered on

the prediction process.

Index Terms—Support vector machine algorithm, parallel

computing, GPU and OpenCL based SVM, image classification,

matrix multiplication.

I. INTRODUCTION

Recently, more and more wearable manufacturers focus on

the health-related products, and provide their supporting

software clients and applications. At present, the wearable

devices are used as the attachment of mobile phones. Thus,

data rendering and processing need to rely on mobile smart

phones. In general, Android phones offer a variety of sensors,

such as direction, gravity, distance, acceleration and so on.

With these sensor data, it is possible to provide health care

services for users.

SVM (Support Vector Machine) is a potential

classification technology based on the pattern recognition

method and statistical learning theory. In the field of health

care applications, SVM algorithm is widely used to analyze

human behavior. Through the analysis and modeling of the

training data, the unknown data can be predicted. Such a

process includes target detection, feature extraction,

modeling, prediction and other processes. But the SVM

consumes a lot of memory space, because of a large-scaled

Manuscript received November 5, 2016; revised December 30, 2016.

This work was supported by the MSIP (Ministry of Science, ICT and Future

Planning), Korea, under the Global IT Talent support program

(IITP-2016-H0905-15-1003) supervised by the IITP (Institute for

Information and Communication Technology Promotion).

The authors are with the Yonsei University, Republic of Korea (e-mail:

nanyiyan@yonsei.ac.kr, liquanzhe@yonsei.ac.kr, kumcun@yonsei.ac.kr,

sdkim@yonsei.ac.kr).

data. Usually, it takes a lot of time to train various test data.

Thus, it can be a main problem when SVM is applied to the

mobile devices.

There are many studies related to the optimization of SVM

algorithm in OpenCL (Open Computing Language)

framework. The characteristics of OpenCL, such as shared

virtual memory, dynamic parallelism and general memory

space, greatly improve programming flexibility to avoid

redundant data transfer. Sparse linear algebra, causing a huge

computational load, is the main field of SVM, because the

SVM solves the support vector by means of quadratic

programming.

In this paper, we utilize the GPU accelerator to improve the

performance with the proposed optimization method. An

accelerated SVM is suggested with the modification of

original LIBSVM (A Library for Support Vector Machines).

The paper implements parallelization of the raw dataset which

is passed to the cross-validation function in order to reduce

computational complexity. Furthermore, the proposed

optimization method is applied to the RBF (Radial basis

function) kernel function in the mobile device.

In the experiment, the CIFAR-10 dataset is used to

implement image classification. The performance of the

accelerated SVM is evaluated both in the PC and mobile

devices. The proposed parallel approach becomes 3.3 times

faster than the serial computing in the PC, and 1.5 times faster

in the mobile device. As a result, the total image classification

time has been improved significantly without reducing the

accuracy rate.

II. RELATED WORK

Many researches have been proposed for accelerating

SVM’s computational speed since it performs expensive

computation during training big-scale dataset. In this section,

several approaches are introduced for speeding up

performance of SVM’s computation.

Cagnini et al. [1] presented a technique that parallelized

SVM method within a GPU together with OpenCL

framework in order to improve efficiency of binary

classification tasks and SVM computations. The authors first

identified the most computationally expensive functions and

then parallelized these functions. [2] The proposed approach

achieved a significant speedup compared to sequential and

CUDA-based approach.

GPU-Accelerated SVM Training Algorithm Based on PC

and Mobile Device

Yi-Yan Nan, Quan-Zhe Li, Jin-Chun Piao, and Shin-Dug Kim

International Journal of Knowledge Engineering, Vol. 2, No. 4, December 2016

182doi: 10.18178/ijke.2016.2.4.076

This paper covers the related work in Section II. The

proposed new approach is described in Section III.

Experiment and results are followed in Section IV. Finally,

Section V concludes this paper.

Yan et al. [3] proposed a new accelerated GPU based

support vector machine method handling kernel matrix

calculation and cross validation by using GPU to speed up

SVM processing. One-against-one, an algorithm that takes

long time in large scale problems was chosen in this paper to

parallelize. Ref. [4] the proposed method could achieve up to

41 times faster compared to LIBSVM according to this

experiments.

Salleh et al. [5], [6] discussed on applying performance

analysis during SVM training session which included SMP

approach and vector processor approach. This research also

benchmarked between CPU and GPU optimization. The

experiment result showed that approach through vector

processor achieves up to 3.11 times better performance

comparing to LIBSVM CPU optimized program.

III. THE PROPOSED APPROACH

A. GPU Optimized Support Vector Machine

In machine learning, the SVM is a supervised learning

model [7]. The SVM is commonly used for pattern

recognition, classification, and regression analysis. Main

procedure of the SVM can be summarized as two points:

1) SVM generally analyzes linearly separable cases. For

linear indivisibility cases, samples of low dimensional

input space are transformed into high-dimensional

feature spaces by using a non-linear mapping algorithm,

so that it is possible to analyze the non-linear

characteristics of the sample using a linear algorithm in

the high-dimensional feature space.

2) Based on the structural risk minimization theory, the

optimal partitioning hyperplane is constructed in the

feature space to make the global optimization of the

learner, and the expected risk in the whole sample space

satisfies a certain upper bound with some probability.

Based on the above points, SVM algorithm is difficult to

implement for large-scaled training samples. Since SVM

solves the support vector by means of quadratic programming

which will involve the calculation of m-order matrices, where

m is the number of samples. When the number of m is large,

the storage and computation of the matrix will consume a

large amount of memory space and computing time. So in this

paper, we utilize the OpenCL framework to speed up the

training phase of the SVM algorithm.

OpenCL is the first open, free standard for parallel

programming of heterogeneous systems for general purpose

[8]. It is also a unified programming environment for software

developers to write any efficient and lightweight code for

high-performance computing servers. In this paper, the

OpenCL2.0 framework is employed, which enhances the

characteristics of shared virtual memory. As shown in Fig.1,

for the shared virtual memory buffer, the host and the device

can be directly accessed, and it will no longer have to worry

about heterogeneous platform for data access. We choose

AMD GPU which supports coarse-grained shared virtual

memory.

Sharing occurs at the granularity of regions of OpenCL

buffer memory objects. We force memory consistency at the

synchronization point, and use the map / unmap command to

update the data between the host and the device. It does not

need to copy the data back and forth, the device and the host

can directly access each other's data. It is useful to reduce the

computational complexity of matrix operations.

Fig. 1. Address space between host and device.

B. Optimization and Proposed Approach

In this paper, we propose a GPU-accelerated SVM with

modification of the original LIBSVM. LIBSVM is an

integrated software package that provides support vector

classification, regression, and distribution estimation. The

approach speeds up the training time through improving

cross-validation process of SVM.

Cross-validation is a statistical analysis method which is

used to verify the performance of SVM classifier. The basic

idea is to group the raw data in a sense, some as training set,

and the other as validation set. Firstly, the training set is used

to train the classifier, and the validation set is used to test the

model to evaluate the performance of the classifier. There are

three common cross-validation methods. LIBSVM employs

one-against-one approach, which is to design an SVM

between any two classes of samples, so k samples need to

design k (k-1)/2 SVMs. When an unknown sample is

categorized, the category with the most votes is the category

of the unknown sample.

We design a parallel version of cross-validation function as

shown in Fig. 2. If the process does n-fold cross-validation,

svm_cross_validation function will create an index array

perm, then the array perm can access the prob which

represents all dataset and their classes to disrupt the prob

effect. Next, the prob is divided into n copies, n-1 for training,

one for test.

After n times, the target saves the test results of all elements

of prob. And the sequence of storage is the same as dataset

arrangement of prob. Finally we compare target and prob.y

which represents the classes of dataset, in order to obtain the

cross-validation recognition accuracy. We estimate

generalization error for n models, and choose optimal model

to predict.

In the above process, the parameter prob is involved in a

large number of sparse matrix multiplication operations. The

memory consumption of the matrix is large, which is

unfavorable for practical applications.

So we call cross_validation_with_KM_percalculated

function that proposed before svm_cross_validation. In this

function, OpenCL framework is employed which is

introduced before. In the original LIBSVM version, prob is

passed to the function svm_cross_validation as an argument.

International Journal of Knowledge Engineering, Vol. 2, No. 4, December 2016

183

Prob carries lots of raw data without any optimization, then

the matrix multiplication operation is performed with these

raw data.

Fig. 2. Parallel version of cross-validation.

The cross_validation_with_KM_percalculated function is

designed to optimize this process and reduce the amount of

training time.

The specific implementation method is shown in Fig. 3. For

each row of prob matrix, we copy data into buffer space, then

calculate the inverse matrix of pecm. The result will be stored

in the shared virtual buffer memory. Next, prob and pecm

perform multiplication parallelization. Finally, Prob_library

which is the result of matrix multiplication will be stored in

the shared virtual buffer memory.

Fig. 3. Cross_validation_with_KM_percalculated function.

IV. EXPERIMENT AND RESULT

A. Experimental Setup

In this paper, we implement two experiments to evaluate

the proposed approach of modification. First experiment is

based on the PC. The configuration of PC is shown in Table I.

The PC device we used in the first experiment is Samsung

laptop, which is composed with 7.7GB main memory, Intel

Core TM i5-3230M 2.60GHz CPU, AMD Radeon R9

M200X Series GPU. And the OpenCL platform is from AMD

Accelerated Parallel Processing OpenCL 2.0 AMD_APP

(1800.11). The experiment is implemented on 64bit Ubuntu

14.04LTS operating system.

Second experiment is based on the mobile device. The

configuration of mobile is shown in Table II.

The mobile device we used in the second experiment is

XiaoMi MI2 series, which is composed of 2GB main memory,

four-cores 1.5GHz QUALCOMM Krait CPU, QUALCOMM

Adreno GPU. And the OpenCL platform is QUALCOMM

Adreno. The experiment is implemented on Android

operating system.

The difference between these two experiments is the type

of GPU. So we need to modify the approach in a way.

Compared to the PC experiment, we optimize the function

which is called svm_train in the original LIBSVM, rather than

svm_cross_validation. In the experiment, we choose BF

kernel function which is mainly used for the linear

indivisibility cases. This function has many parameters. The

result of classification is dependent on these parameters. So it

is a time-consuming process. The proposed optimization of

the PC is applied to the different function in the mobile device.

The parallel computing also can be applied to the

implementation of feature matrix multiplication in the RBF

kernel function.

The dataset that we use in two experiments is CIFAR-10.

The CIFAR-10 dataset consists of 60,000 32*32 color images

distributed in 10 classes, each with 6000 images. These

60,000 images include 50,000 training images and 10,000 test

images, respectively [9].

TABLE I: THE CONFIGURATION OF PC

Samsung laptop 64bit

Operating system Ubuntu 14.04LTS

CPU Intel Core TM i5-3230M 2.60GHz

Main memory 7.7GB

GPU AMD Radeon R9 M200X Series

OpenCL platform

AMD Accelerated Parallel Processing

OpenCL 2.0 AMD_APP (1800.11)

TABLE II: THE CONFIGURATION OF MOBILE DEVICE

XiaoMi MI2

Operating system Android4.11

CPU four-cores 1.5GHz QUALCOMM Krait

Main memory 2GB

GPU QUALCOMM Adreno

OpenCL platform 1.1 Adreno(TM) 320

Note that, the type of data loaded from CIFAR-10 is integer,

it needs to convert into the image type. Each file has a

10000*3027N array, each row of the array stores a 32*32

color image. The first 1024 entries represent red, the next

1024 represents green, and the last 1024 represents blue. The

image is stored in a row-major order, so that the first 32

entries of the array are the red channel values of the first row

of the image.

Based on such environment and optimization method, we

implement the image classification to verify the performance

of the proposed algorithm.

First of all, we extract image features. GIST feature

extraction is a computational model that identifies the real

world. The model bypasses the segmentation and processing

International Journal of Knowledge Engineering, Vol. 2, No. 4, December 2016

184

of individual objects or regions [10]. A five-dimensional

perception dimension is used to represent the main elements

of a scene, including nature, openness, roughness,

extensibility, and robustness. These dimensions can reliably

estimate the used spectral and coarse location information,

although these dimensions can be used to represent a scene

picture.

Fig. 4. Comparison between serial and parallel computing in the PC.

Fig. 5. Comparison between serial and parallel computing in the mobile

device.

Here we use the GIST feature extraction, download the

gistdescriptor package that already has a Gist function, and it

can call it as follows : [Gist1, param] = LMgist (Image, '',

param); We import each picture on the corresponding feature

extraction, with a 1:50000 cycle. So the image data are

converted into the format of training and testing. The format is

defined as follows : <label> <index> : <value>.

B. Result

Fig. 4 shows the result of the first experiment, the

comparison between serial and parallel computing in the PC.

The serial computing represents the original LIBSVM

without any modification. Because we only optimize the

training process, only the training time of classification is

affected. The training time of serial and parallel SVM is

208.74s, 72.66s respectively. As the Fig.4 shows, the

proposed approach, the parallel computing, it gains 3.3x

speed up in the total execution. The total time of serial and

parallel SVM is 610.55s, 189.82s respectively. The

classification accuracy has not been greatly improved.

Fig. 5 shows the result of the second experiment, the

comparison between serial and parallel computing in the

mobile device. The parallel computing becomes 1.5 times

faster than the serial computing. The training time of serial

and parallel SVM is 782s, 452s respectively. And it gains

1.5x speed up in the total execution. The classification

accuracy also has not been greatly improved.

As a result, the proposed parallel version SVM shows the

better performance in both PC and mobile device. Although

we just optimize the training process, the total image

classification time has been improved without reducing the

accuracy rate.

V. CONCLUSION

In this paper, we optimize the SVM performance with the

combination of the GPU device. We suggest an accelerated

SVM with modification of the original LIBSVM.

We implement parallelization of the cross-validation

function in the PC. In addition, the proposed optimization

method is applied to the RBF kernel function in the mobile

devices.

In the experiment, we use CIFAR-10 image dataset to

evaluate the proposed SVM classifier both in the PC and

mobile devices. The proposed approach, the parallel

computing becomes 3.3 times faster than the serial computing

in the PC, and 1.5 times faster in the mobile device. In general,

the total image classification time has been greatly improved

without reducing the accuracy rate.

For future work, we will focus on improving the predict

process, since the accuracy rate and predict time are not

greatly improved.

REFERENCES

[1] S. N. Shakirah and M. F. Baharim, “Performance comparison of

parallel execution using GPU and CPU in SVM training session,”

presented at 2015 4th International Conference on Advanced

Computer Science Applications and Technologies (ACSAT), IEEE,

2015.

[2] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector

classification,” Department of Computer Science, National Taiwan

University, Taipei, 2010, pp. 1-16.

[3] C. Henry et al., “A portable OpenCL-based approach for SVMs in

GPU,” presented at 2015 Brazilian Conference on Intelligent Systems

(BRACIS), IEEE, 2015.

[4] Pc gpu market bounces back, with nvidia up and amd down. (2014).

[Online]. Available:

http://www.forbes.com/sites/jasonevangelho/2014/02/19/pc-gpu-mar

ket-bounces-back-with-nvidia-up-and-amd-down/

[5] Y. Bo et al., “A GPU based SVM method with accelerated kernel

matrix calculation,” presented at 2015 IEEE International Congress on

Big Data, IEEE, 2015.

[6] Q. Liao, J. Wang, Y. Webster, and I. Watson, “GPU accelerated

support vector machines for mining high-throughput screening data,”

Journal of chemical information and modeling, vol. 49, no. 12, pp.

2718-2725, 2009.

[7] WR. Fan. LIBSVM data: Classification, regression, and multi-label.

[Online]. Available: https://www.csie.ntu.edu.tw/

[8] OpenCLTM 2.0 - Shared Virtual Memory. [Online]. Available:

http://developer.amd.com/community/blog/2014/10/24/opencl-2-shar

ed-virtual-memory/

[9] E. F. Carvalho and P. M. Engel, “Convolutional sparse feature

descriptor for object recognition in CIFAR-10,” presented at 2013

Brazilian Conference on the Intelligent Systems (BRACIS).

[10] G. W. Juette and L. E. Zeffanella, “Indoor/outdoor image classification

using GIST image features and neural network classifiers,” presented

at 2015 12th International Conference on the High-Capacity Optical

Networks and Enabling/Emerging Technologies (HONET), , 21-23

Dec. 2015.

International Journal of Knowledge Engineering, Vol. 2, No. 4, December 2016

185

http://developer.amd.com/community/blog/2014/10/24/opencl-2-shar

Yi-Yan Nan received the B.S. degree in software

engineering from Jilin University, Changchun, China,

in 2014. She is currently a M.S. student in Department

of Computer Science at Yonsei University, Korea. Her

research interest is activity recognition.

Quan-Zhe Li received the B.S. degree in computer

science from Anhui University, Anhui, China, in 2009.

He is currently a M.S. student in Department of

Computer Science at Yonsei University, Korea. His

research interests include activity recognition and

parallel computing.

Jin-Chun Piao received the B.S. degree in computer

science and technology from Beijing Forestry

University, Beijing, China, in 2010. He is currently a

combined M.S. and Ph.D. student in Department of

Computer Science at Yonsei University, Korea. His

research interests include AR based ubiquitous

computing, mobile computing and graphics.

Korea Shin-Dug Kim received his B.S. degree in

electronic engineering from Yonsei University, Seoul,

Korea in 1982, and M.S. degree in electrical & computer

engineering from University of Oklahoma, Norman, in

1987. In 1991, he received his Ph.D. degree from the

School of Electrical & Computer Engineering at Purdue

University, West Lafayette. He is currently a professor

of computer science at Yonsei University. His research

interests include advanced computer systems, intelligent memory system

design, and ubiquitous computing platforms. He is a member of IEEE.

International Journal of Knowledge Engineering, Vol. 2, No. 4, December 2016

186

