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Abstract—This work is to design an accelerated SVM 

(Support Vector Machine) which is suitable for Android 

operating system. SVM is widely used in the health-related 

applications. The SVM provides a potential classification 

technology based on the pattern recognition method and 

statistical learning theory. This paper proposes a parallel SVM 

algorithm based on GPU accelerator. GPU can provide better 

performance on matrix multiplication through parallelization 

which is the main drawback of conventional SVM execution. 

The cross validation function in the personal computer is 

designed and improved, and SVM training function in the 

mobile devices in addition. Through the above approach, the 

influence of matrix calculation on the whole system can be 

reduced to a certain extent. In the experiment of image 

classification, compared to the serial SVM, the proposed 

approach can achieve 3.3x speed up in the PC, and 1.5x speed up 

in the mobile devices. But the accuracy rate is not greatly 

improved both. Since the experiment mainly focuses on 

improving the execution time, no optimization is considered on 

the prediction process. 

 

Index Terms—Support vector machine algorithm, parallel 

computing, GPU and OpenCL based SVM, image classification, 

matrix multiplication. 

 

I. INTRODUCTION 

Recently, more and more wearable manufacturers focus on 

the health-related products, and provide their supporting 

software clients and applications. At present, the wearable 

devices are used as the attachment of mobile phones. Thus, 

data rendering and processing need to rely on mobile smart 

phones. In general, Android phones offer a variety of sensors, 

such as direction, gravity, distance, acceleration and so on. 

With these sensor data, it is possible to provide health care 

services for users. 

SVM (Support Vector Machine) is a potential 

classification technology based on the pattern recognition 

method and statistical learning theory. In the field of health 

care applications, SVM algorithm is widely used to analyze 

human behavior. Through the analysis and modeling of the 

training data, the unknown data can be predicted. Such a 

process includes target detection, feature extraction, 

modeling, prediction and other processes. But the SVM 

consumes a lot of memory space, because of a large-scaled 
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data. Usually, it takes a lot of time to train various test data. 

Thus, it can be a main problem when SVM is applied to the 

mobile devices. 

There are many studies related to the optimization of SVM 

algorithm in OpenCL (Open Computing Language) 

framework. The characteristics of OpenCL, such as shared 

virtual memory, dynamic parallelism and general memory 

space, greatly improve programming flexibility to avoid 

redundant data transfer. Sparse linear algebra, causing a huge 

computational load, is the main field of SVM, because the 

SVM solves the support vector by means of quadratic 

programming. 

In this paper, we utilize the GPU accelerator to improve the 

performance with the proposed optimization method. An 

accelerated SVM is suggested with the modification of 

original LIBSVM (A Library for Support Vector Machines). 

The paper implements parallelization of the raw dataset which 

is passed to the cross-validation function in order to reduce 

computational complexity. Furthermore, the proposed 

optimization method is applied to the RBF (Radial basis 

function) kernel function in the mobile device. 

In the experiment, the CIFAR-10 dataset is used to 

implement image classification. The performance of the 

accelerated SVM is evaluated both in the PC and mobile 

devices. The proposed parallel approach becomes 3.3 times 

faster than the serial computing in the PC, and 1.5 times faster 

in the mobile device. As a result, the total image classification 

time has been improved significantly without reducing the 

accuracy rate. 

 

II. RELATED WORK 

Many researches have been proposed for accelerating 

SVM’s computational speed since it performs expensive 

computation during training big-scale dataset. In this section, 

several approaches are introduced for speeding up 

performance of SVM’s computation. 

Cagnini et al. [1] presented a technique that parallelized 

SVM method within a GPU together with OpenCL 

framework in order to improve efficiency of binary 

classification tasks and SVM computations. The authors first 

identified the most computationally expensive functions and 

then parallelized these functions. [2] The proposed approach 

achieved a significant speedup compared to sequential and 

CUDA-based approach. 
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This paper covers the related work in Section II. The 

proposed new approach is described in Section III. 

Experiment and results are followed in Section IV. Finally, 

Section V concludes this paper.



  

Yan et al. [3] proposed a new accelerated GPU based 

support vector machine method handling kernel matrix 

calculation and cross validation by using GPU to speed up 

SVM processing. One-against-one, an algorithm that takes 

long time in large scale problems was chosen in this paper to 

parallelize. Ref. [4] the proposed method could achieve up to 

41 times faster compared to LIBSVM according to this 

experiments. 

Salleh et al. [5], [6] discussed on applying performance 

analysis during SVM training session which included SMP 

approach and vector processor approach. This research also 

benchmarked between CPU and GPU optimization. The 

experiment result showed that approach through vector 

processor achieves up to 3.11 times better performance 

comparing to LIBSVM CPU optimized program. 

 

III. THE PROPOSED APPROACH 

A. GPU Optimized Support Vector Machine 

In machine learning, the SVM is a supervised learning 

model [7]. The SVM is commonly used for pattern 

recognition, classification, and regression analysis. Main 

procedure of the SVM can be summarized as two points: 

1) SVM generally analyzes linearly separable cases. For 

linear indivisibility cases, samples of low dimensional 

input space are transformed into high-dimensional 

feature spaces by using a non-linear mapping algorithm, 

so that it is possible to analyze the non-linear 

characteristics of the sample using a linear algorithm in 

the high-dimensional feature space. 

2) Based on the structural risk minimization theory, the 

optimal partitioning hyperplane is constructed in the 

feature space to make the global optimization of the 

learner, and the expected risk in the whole sample space 

satisfies a certain upper bound with some probability. 

Based on the above points, SVM algorithm is difficult to 

implement for large-scaled training samples. Since SVM 

solves the support vector by means of quadratic programming 

which will involve the calculation of m-order matrices, where 

m is the number of samples. When the number of m is large, 

the storage and computation of the matrix will consume a 

large amount of memory space and computing time. So in this 

paper, we utilize the OpenCL framework to speed up the 

training phase of the SVM algorithm. 

OpenCL is the first open, free standard for parallel 

programming of heterogeneous systems for general purpose 

[8]. It is also a unified programming environment for software 

developers to write any efficient and lightweight code for 

high-performance computing servers. In this paper, the 

OpenCL2.0 framework is employed, which enhances the 

characteristics of shared virtual memory. As shown in Fig.1, 

for the shared virtual memory buffer, the host and the device 

can be directly accessed, and it will no longer have to worry 

about heterogeneous platform for data access. We choose 

AMD GPU which supports coarse-grained shared virtual 

memory. 

Sharing occurs at the granularity of regions of OpenCL 

buffer memory objects. We force memory consistency at the 

synchronization point, and use the map / unmap command to 

update the data between the host and the device. It does not 

need to copy the data back and forth, the device and the host 

can directly access each other's data. It is useful to reduce the 

computational complexity of matrix operations. 
 

 
Fig. 1. Address space between host and device. 

 

B. Optimization and Proposed Approach 

In this paper, we propose a GPU-accelerated SVM with 

modification of the original LIBSVM. LIBSVM is an 

integrated software package that provides support vector 

classification, regression, and distribution estimation. The 

approach speeds up the training time through improving 

cross-validation process of SVM. 

Cross-validation is a statistical analysis method which is 

used to verify the performance of SVM classifier. The basic 

idea is to group the raw data in a sense, some as training set, 

and the other as validation set. Firstly, the training set is used 

to train the classifier, and the validation set is used to test the 

model to evaluate the performance of the classifier. There are 

three common cross-validation methods. LIBSVM employs 

one-against-one approach, which is to design an SVM 

between any two classes of samples, so k samples need to 

design k (k-1)/2 SVMs. When an unknown sample is 

categorized, the category with the most votes is the category 

of the unknown sample. 

We design a parallel version of cross-validation function as 

shown in Fig. 2. If the process does n-fold cross-validation, 

svm_cross_validation function will create an index array 

perm, then the array perm can access the prob which 

represents all dataset and their classes to disrupt the prob 

effect. Next, the prob is divided into n copies, n-1 for training, 

one for test. 

After n times, the target saves the test results of all elements 

of prob. And the sequence of storage is the same as dataset 

arrangement of prob. Finally we compare target and prob.y 

which represents the classes of dataset, in order to obtain the 

cross-validation recognition accuracy. We estimate 

generalization error for n models, and choose optimal model 

to predict. 

In the above process, the parameter prob is involved in a 

large number of sparse matrix multiplication operations. The 

memory consumption of the matrix is large, which is 

unfavorable for practical applications. 

So we call cross_validation_with_KM_percalculated 

function that proposed before svm_cross_validation. In this 

function, OpenCL framework is employed which is 

introduced before. In the original LIBSVM version, prob is 

passed to the function svm_cross_validation as an argument. 
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Prob carries lots of raw data without any optimization, then 

the matrix multiplication operation is performed with these 

raw data.  
 

 
Fig. 2. Parallel version of cross-validation. 

 

The cross_validation_with_KM_percalculated function is 

designed to optimize this process and reduce the amount of 

training time. 

The specific implementation method is shown in Fig. 3. For 

each row of prob matrix, we copy data into buffer space, then 

calculate the inverse matrix of pecm. The result will be stored 

in the shared virtual buffer memory. Next, prob and pecm 

perform multiplication parallelization. Finally, Prob_library 

which is the result of matrix multiplication will be stored in 

the shared virtual buffer memory. 
 

 
Fig. 3. Cross_validation_with_KM_percalculated function. 

 

IV. EXPERIMENT AND RESULT 

A. Experimental Setup 

In this paper, we implement two experiments to evaluate 

the proposed approach of modification. First experiment is 

based on the PC. The configuration of PC is shown in Table I. 

The PC device we used in the first experiment is Samsung 

laptop, which is composed with 7.7GB main memory, Intel 

Core TM i5-3230M 2.60GHz CPU, AMD Radeon R9 

M200X Series GPU. And the OpenCL platform is from AMD 

Accelerated Parallel Processing OpenCL 2.0 AMD_APP 

(1800.11). The experiment is implemented on 64bit Ubuntu 

14.04LTS operating system. 

Second experiment is based on the mobile device. The 

configuration of mobile is shown in Table II. 

The mobile device we used in the second experiment is 

XiaoMi MI2 series, which is composed of 2GB main memory, 

four-cores 1.5GHz QUALCOMM Krait CPU, QUALCOMM 

Adreno GPU. And the OpenCL platform is QUALCOMM 

Adreno. The experiment is implemented on Android 

operating system. 

The difference between these two experiments is the type 

of GPU. So we need to modify the approach in a way. 

Compared to the PC experiment, we optimize the function 

which is called svm_train in the original LIBSVM, rather than 

svm_cross_validation. In the experiment, we choose BF 

kernel function which is mainly used for the linear 

indivisibility cases. This function has many parameters. The 

result of classification is dependent on these parameters. So it 

is a time-consuming process. The proposed optimization of 

the PC is applied to the different function in the mobile device. 

The parallel computing also can be applied to the 

implementation of feature matrix multiplication in the RBF 

kernel function. 

The dataset that we use in two experiments is CIFAR-10. 

The CIFAR-10 dataset consists of 60,000 32*32 color images 

distributed in 10 classes, each with 6000 images. These 

60,000 images include 50,000 training images and 10,000 test 

images, respectively [9]. 
 

TABLE I: THE CONFIGURATION OF PC 

Samsung laptop 64bit 

Operating system Ubuntu 14.04LTS 

CPU  Intel Core TM i5-3230M 2.60GHz 

Main memory 7.7GB 

GPU AMD Radeon R9 M200X Series 

OpenCL platform 

AMD Accelerated Parallel Processing 

OpenCL 2.0 AMD_APP (1800.11) 

 

 

TABLE II: THE CONFIGURATION OF MOBILE DEVICE 

XiaoMi MI2 

Operating system Android4.11 

CPU  four-cores 1.5GHz QUALCOMM Krait 

Main memory 2GB 

GPU QUALCOMM Adreno 

OpenCL platform 1.1 Adreno(TM) 320 

 

Note that, the type of data loaded from CIFAR-10 is integer, 

it needs to convert into the image type. Each file has a 

10000*3027N array, each row of the array stores a 32*32 

color image. The first 1024 entries represent red, the next 

1024 represents green, and the last 1024 represents blue. The 

image is stored in a row-major order, so that the first 32 

entries of the array are the red channel values of the first row 

of the image. 

Based on such environment and optimization method, we 

implement the image classification to verify the performance 

of the proposed algorithm. 

First of all, we extract image features. GIST feature 

extraction is a computational model that identifies the real 

world. The model bypasses the segmentation and processing 
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of individual objects or regions [10]. A five-dimensional 

perception dimension is used to represent the main elements 

of a scene, including nature, openness, roughness, 

extensibility, and robustness. These dimensions can reliably 

estimate the used spectral and coarse location information, 

although these dimensions can be used to represent a scene 

picture. 
 

 
Fig. 4. Comparison between serial and parallel computing in the PC. 

 

 
Fig. 5. Comparison between serial and parallel computing in the mobile 

device. 

 

Here we use the GIST feature extraction, download the 

gistdescriptor package that already has a Gist function, and it 

can call it as follows : [Gist1, param] = LMgist (Image, '', 

param); We import each picture on the corresponding feature 

extraction, with a 1:50000 cycle. So the image data are 

converted into the format of training and testing. The format is 

defined as follows : <label> <index> : <value>. 

B. Result 

Fig. 4 shows the result of the first experiment, the 

comparison between serial and parallel computing in the PC. 

The serial computing represents the original LIBSVM 

without any modification. Because we only optimize the 

training process, only the training time of classification is 

affected. The training time of serial and parallel SVM is 

208.74s, 72.66s respectively. As the Fig.4 shows, the 

proposed approach, the parallel computing, it gains 3.3x 

speed up in the total execution. The total time of serial and 

parallel SVM is 610.55s, 189.82s respectively. The 

classification accuracy has not been greatly improved. 

Fig. 5 shows the result of the second experiment, the 

comparison between serial and parallel computing in the 

mobile device. The parallel computing becomes 1.5 times 

faster than the serial computing. The training time of serial 

and parallel SVM is 782s, 452s respectively. And it gains 

1.5x speed up in the total execution. The classification 

accuracy also has not been greatly improved. 

As a result, the proposed parallel version SVM shows the 

better performance in both PC and mobile device. Although 

we just optimize the training process, the total image 

classification time has been improved without reducing the 

accuracy rate. 

 

V. CONCLUSION 

In this paper, we optimize the SVM performance with the 

combination of the GPU device. We suggest an accelerated 

SVM with modification of the original LIBSVM.  

We implement parallelization of the cross-validation 

function in the PC. In addition, the proposed optimization 

method is applied to the RBF kernel function in the mobile 

devices.  

In the experiment, we use CIFAR-10 image dataset to 

evaluate the proposed SVM classifier both in the PC and 

mobile devices. The proposed approach, the parallel 

computing becomes 3.3 times faster than the serial computing 

in the PC, and 1.5 times faster in the mobile device. In general, 

the total image classification time has been greatly improved 

without reducing the accuracy rate. 

For future work, we will focus on improving the predict 

process, since the accuracy rate and predict time are not 

greatly improved. 
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