



Abstract—Previously, there were morphological analyzer

and lemmatization method for Bahasa: Indonesian language,

yet they have not handled all occurred cases. Therefore, we

develop an algorithm which combines two tasks; they are to

generate affixed words from a root word and vice versa. The

current morphological analyzer to generate affixed words has

not covered in analyzing two words, whilst the current

lemmatization method cannot find out the lemma from an

affixed word which has confix and reduplication. Hence, we will

cover these issues in order to enhance the current methods. The

algorithm concerns only in Bahasa. The algorithm to generate

affixed word is based on the two-level morphological analyzer,

while refinement of lemmatization method is based on rule

precedence and token checking. After implementing the

algorithms, we find out that affixed word produced is 12.63%

productive words, 86.98% non-productive words, and 0.39%

incorrect words for the affixed word, whilst lemmatization can

achieve 96.11% accuracy.

Index Terms—Affixed word, root word, Bahasa,

morphological analyzer, lemmatization.

I. INTRODUCTION

Language is an important communication tool for human.

By using language, people can communicate one to another

directly. Consequently, we have to master language and its

components, such as vocabulary, structure, etc. By

understanding them, we can have an interaction each other

without any miscommunication.

There are many researches in language and technology

field. Yet, not all languages can be integrated to all kind of

invented technologies since they have their own

characteristics. Every language has its own rules, as well as it

cannot be separated from the language convention. Therefore,

if a language is going to be embedded into technology, a

specific technique which focuses only to one language should

be built.

Bahasa (Indonesian language) is an important language in

South East Asia region. In fact, Bahasa becomes the 4th

famous national language in the world [1]. Related with the

issue nowadays that people use the language badly, we often

find the improper usage of language in Bahasa. For example,

the word “diubah” (literally means “be changed”) is

frequently replaced with the word “dirubah” (grammatically

Manuscript received September 10, 2015; revised December 15, 2015.

This work was fully supported by Bina Nusantara University, Jakarta,

Indonesia.
A. B. Oktarino, D. T. Winahyu, and A. Halim were with Bina Nusantara

University, Indonesia.

D. Suhartono is with Bina Nusantara University, Jakarta, Indonesia

(e-mail: dsuhartono@binus.edu).

wrong). By understanding the language morphology,

hopefully people are able to decrease the number of errors in

using the language either grammatically or semantically.

In understanding the language morphology, some basic

mechanism will be involved such as stemming and

lemmatization. Stemming is a process that is aimed to reduce

number of variation in representing a concept to be a standard

or formal representation [2], whilst lemmatization is a

process to seek the basic form or usually called as lemma

from a particular word [3]. Stemming and lemmatization are

used in defining language morphology. Morphology is

knowledge about how to generate a word from the smaller

units which has specific meanings. The smaller units here are

called as morphemes [4].

Based on the background, an algorithm of word generator

that constructs affixed word from root word and vice versa

are built. The benefit of using this generator is that user can

observe how an affixed word can be constructed, what are the

root words, and any other information inside words. From all

the information user has, hopefully it can be a new resource

for user to learn about word morphology. Furthermore, it can

be an initialize research to develop search engine, machine

translation, or many applications related to natural language

processing.

The rest of the paper is organized as follows. We first

review and explore the related work in Section II. We

describe the proposed method how to generate affixed words

in the Section III. Experiment design, testing result and

discussion will be presented in Section IV. The final section;

it is Section V, will conclude and summarize the findings of

our research.

II. RELATED WORK

Stemming is used to reduce variation amount in

representing a concept to be a standard or formal

representation [2]. Adriani, Asian, Nazief, Tahaghoghi,

Williams tried to improve the accuracy of stemming that

Nazief and Adriani made before [5]. According to their

analysis, errors that are existed in previous research mostly

come from some aspects; they are non-root words in

dictionary, incomplete dictionary, and words that are written

by using hyphenation, whereas the remaining is caused by

ineffective and ordering rules. By using the same dataset, the

improvement has been made [6] from [5]; it reaches around

95% in accuracy. The accuracy is higher 2-3% than the

previous stemming approach.

A two-level morphological analyzer was introduced by

Pisceldo, Mahendra, Manurung, and Arka [7]. The

Generating Affixed Words from a Root Word and Getting

Lemma from Affixed Word in Bahasa: Indonesian

Language

Andri Budiman Oktarino, Dwi Taruna Winahyu, Andrew Halim, and Derwin Suhartono

International Journal of Knowledge Engineering, Vol. 2, No. 3, September 2016

132doi: 10.18178/ijke.2016.2.3.067

morphological analyzer for Bahasa is divided into two

components; they are morphotactic and morphophonemic

rule. The rules in each component are usually worked in

parallel. Moreover, the rules are combined with vocabulary

to complete the design. A word that is going to be analyzed

will follow this sequence:

vocabulary  morphotactic rules  morphophonemic rules

 surface

Before the result occurs in the surface, it will follow the

sequential order starts from vocabulary to find out the actual

morpheme of the word. After passing the vocabulary

checking, the word will then be analyzed by morphotactic

and morphophonemic rules. In designing a morphological

analyzer, morphotactic rules are crucial to model how two or

more morphemes can be merged. However, the merging

process is still not completed; hence changes have to be made

after these morphemes are merged. For these issues,

morphophonemic rules are defined for phonetic changes that

occur. After done with those processes, the analysis result

will be delivered through the surface.

The research result here is a morphological analyzer for

Bahasa that is able to give the detailed analysis from

affixation process using two level morphological approaches.

This approach is able to handle reduplication, and

non-concatenative morphological process. This technique is

usually called as IndMA.

There was another research which develops IndMA further,

it was conducted by Larasati, Kubon and Zeman [8]. A robust

finite state morphology tools for Bahasa is proposed. The

technique is called as MorphInd. The research describes

about morphological analyzer and lemmatization from given

words so that it can be processed further. MorphInd creates

morphological information which in its output format

becomes morphemic segmentation, morpheme lemma

position, lexical category, and morphological features.

MorphInd gives better scopes rather than IndMA. MorphInd

covers clitics, numeral alternation, and additional particle

morphemes which were not covered by IndMA.

Related with MorphInd, a lemmatization process

specifically for Bahasa is developed by Suhartono,

Christiandy, and Rolando [9]. The research idea comes from

the research about stemming in Bahasa [10]. The

lemmatization goal is to modify the Enhanced Confix

Stripping so that it can be used in accordance with the

lemmatization principle. However, it has the similarity in

some process inside, such as affix removal to get the lemma

form. The lemmatization process includes several process;

they are dictionary lookup, rule precedence check,

inflectional suffix removal, derivational suffix removal,

derivational prefix removal, recoding, suffix backtracking,

return original word or return lemma. They are not sequential

order process, but it has some conditional statement to be

checked before going through the process. Based on testing

result, this technique achieved probably 98% accuracy. It has

to be enhanced by defining an algorithm for some words

exception; such as repetitive words, words with infixes,

proper nouns, abbreviations, and foreign words.

III. PROPOSED METHOD

In this research, sample data was taken from the online

article such as Kompas, Detik, Tempo and printed articles

from Kompas. The total tested words were 1098. The words

are inputted to the algorithm scheme in figure 1 to be

processed.

Fig. 1 explains the whole process of the algorithm. We

represent each process by using alphabets. The description of

the process is given below:

A. Database Lookup

The database contains all the root words in Bahasa and

their word class. Database lookup is conducted after a word

has been inputted and it occurs repeatedly in time when every

affix removal happens. The first database lookup is used to

determine which algorithm will be selected. If input word is

not found in database, then go to lemmatization process

otherwise continue to the affixed word generator process.

B. Morphotactic

Morphotactic is a process to find out which affix is suitable

to be attached to input word based on its word class. Based on

[7], we categorize the word class into 4 categories; they are

Noun, Verb, Adjective, and Etc.

C. Morphophonemic

The morphophonemic rule contains the rules that can

change the prefix pronunciation in accordance with first

alphabet from the input word.

D. Return Word and Its Affixes

After done with morphotactic and morphophonemic rules,

then the output are displayed. The output consists of all

alternatives affixes which can be attached to the input word.

E. Token Lookup

In the lemmatization rule, if the input word is not found in

the database, then the symbol “-” inside the words will be

observed.

F. Repeated Word Concatenations

If the symbol “-” is existed in the word, then the words

which are connected with the symbol will be concatenated.

The words before and after “-” are assigned to the different

variables. If both variables contain the same word, then we

will do step A to find out the dictionary form of the word.

Otherwise we will do affix removal rule to each variable. The

variable which contains root word will not execute the rule.

After the affix removal is finished to both variables, we will

do database lookup again to look for their dictionary form.

G. Return Lemma Word

If the root word is still not found after execute all

lemmatization rule, then input word is considered as incorrect

and will be processed further, otherwise it will be displayed at

the output screen.

H. Rule Precedence Checking

If the input word does not exist in the database and it does

not have tokens, then do the rule precedence checking. Rule

precedence is part of rules which permit affix removal; it

begins with new prefix and continues to suffix [4]. As for, the

requisite of rule precedence is the combination of the

following affixes:

 „be-„ and „-lah‟

International Journal of Knowledge Engineering, Vol. 2, No. 3, September 2016

133

 „be-‟ and „-an‟

 „me-‟ and „-i‟

 „di-‟ and „-i‟

 „pe-‟ and „-i‟

 „te-‟ and „-i‟

BEGIN

Input
Word

A

B

TRUE

D END

FALSE
E

FALSE

F

H

TRUE

J

FALSE

I

TRUE

A

A

J

A

K

A A

A

FALSE FALSE

FALSE FALSE

ENDG

TRUE TRUE TRUE

TRUE TRUE TRUE

A
FALSE

G
TRUE

FALSE

C

A

TRUE

J

A

TRUE

K

FALSE

A

I

FALSE

TRUE

A

TRUE

FALSE FALSE

A

TRUE

A

TRUE

L

L

M

FALSE

FALSE

K I I J K

FALSE

Fig. 1. Algorithm to generate affixed word and lemma word.

If the input word does not fulfill rule precedence requisite,

affix removal will be executed from suffix. By applying rule

precedence, there are some affix word cases which can be

finished faster and achieve more accurate result. Example,

for the word “bermasalah” (literally means problematic), if

we remove suffix “-lah” before prefix “ber-”, then the result

will not be appropriate as expected; it is “masa” (literally

means period/time)

A. Derivational Prefix Removal

Derivational prefix has two groups. The first group is

prefixes which have no morphophonemic, for example: „di-‟,

ke-‟, „ku-‟, and „se-‟. Otherwise, the second group has

morphophonemic form, it is the alternative form following

the word‟s first alphabet, for example: „me-‟, be-‟, „pe-‟, and

„te-‟

B. Inflectional Suffix Removal

Inflectional suffix has two groups. The first group is

particle suffix, for example: „-lah‟, „-kah‟, „-tah‟, and „-pun‟.

The second group is suffix that explains possession, example:

„-ku‟, „-mu‟, and „-nya‟

C. Derivational Suffix Removal

Derivational suffix consists of „-i‟, „-kan‟, and „-an‟. They

are removed in this section.

D. Affixed Word Reconstruction

If lemmatization process cannot get a word that is existed

in the database, then the word will be returned back as the

original word like when it is being inputted. After affixed

word has been reconstructed, lemmatization process will be

reversely done. If in the first experiment, affix is removed

from the front, then after reconstruction affix will be removed

from the back, and vice versa. This is useful because there are

some words which have the same form with the affixed word

so that in some cases the word will be removed and database

lookup will returns fail result. For example by following

lemmatization rule, the word “dimakan” (literally means “be

eaten”) will remove suffix, otherwise if “-kan” is removed

from the word “dimakan”, database lookup will not be

succeed because part of the word which should not be

removed is still removed. After doing word reconstruction

and the process is executed reversely (from the front), then

we can get the word “makan” (literally mean “eating”).

E. Return Input Word

After all the steps in the algorithm has been conducted but

the output still cannot be found, then input word will be

displayed at the output screen and the input word will be

considered as the wrong one.

IV. RESULTS AND DISCUSSION

From 1098 testing words, 577 of them are root words so

they are processed through affixed words generator, 437 of

them are affixed words so they are processed through

lemmatization, and 84 words are invalid words.

A. Getting Lemma from Affixed Word

By conducting test to the lemmatization algorithm which

consists of 437 tested words, there are 17 errors occur in affix

removal. It means that 420 words out of them result on

success. In brief, the percentage of success and failure of the

lemmatization are:

L(S)=
420

437
× 100% = 96.11%

International Journal of Knowledge Engineering, Vol. 2, No. 3, September 2016

134

L(F) =
17

437
× 100% = 3.89%

L(S) = percentage of success on lemmatization

L(F) = percentage of failure on lemmatization

From the calculation, percentage of success on

lemmatization is very high; it is 96.11%, whilst the

percentage of failure is very low; it is 3.89%.

TABLE I: COMPARISON TO OTHER APPROACHES

Research Topic Approach Methodology Accuracy

Stemming

Indonesian: A

Confix-Stripping
Approach

Based on

dictionary and

rules

Rule of prefix,

suffix, confix by

dictionary
lookup

95%

Lemmatization

Technique in
Bahasa: Indonesian

Language

Based on

dictionary and
rules

Rule of prefix,

suffix, confix by
dictionary

lookup

98%

Generating Affixed

Words from a Root
Word and Getting

Lemma from

Affixed Word in
Bahasa: Indonesian

Language

Based on

dictionary and
rules

Rule of prefix,

suffix, confix by
dictionary

lookup

96.11%

From Table I, the percentage of success in our

lemmatization is lower than previous research [9] which

achieves around 98% in accuracy. This is because we differs

the input into 2 categories such that if the input word is the

root word then it will run the affixed word generator

algorithm

B. Getting Affixed Words from a Root Word

The testing uses 577 root words which results on 14647

affixed words, but not all of them are productive words. For

affixed words generator, the output result is categorized into

3; they are productive words, non-productive words, and

error words. From 14647 affixed words, the total of

productive words is 1851, total of non-productive words is

12471, and total of error words is 55. Accordingly, the

percentages for each category are:

M(P) =
1851

14647
× 100% = 12.63%

M(NP) =
12741

14647
× 100% = 86.98%

M(E) =
55

14647
× 100% = 0.39%

M(P) = percentage of productive words on affixed word

generator

M(NP) = percentage of non-productive words on affixed

word generator

M(E) = percentage of error words on affixed word

generator

Productive words are words in which their way to

construct has followed the rules in Bahasa and they can be

found in Kamus Besar Bahasa Indonesia (dictionary of

Indonesian language).

Non-productive words are words in which their way to

construct has followed the rules in Bahasa but they cannot be

used by common people such that it cannot be found in

dictionary. Nevertheless there is probability for them to be

used by people in the future.

Error words are words in which their way to construct has

followed the rules in Bahasa but the resulted words are not

suitable to the common words.

The percentage of productive words is quite low; it is

12.63%. Although the words are correctly constructed based

on the rules but they are not commonly used by people.

Therefore, the total amount between productive and

non-productive words is significantly high; it is 99.61%. It

means the algorithm runs well to produce affixed words.

C. Testing Summary

Based on the testing conducted, 17 errors occur in

lemmatization algorithm, 7 of them are caused by

over-lemmatized words, 4 of them are caused by

under-lemmatized words, and 6 of them are the incorrect rule

TABLE II: EXAMPLE OF ERRORS IN LEMMATIZATION

Case Example

Over-lemmatized mengurangi  urang

Under-lemmatized pengamat  kamat

Incorrect rule implementation sesuai  sua

At the over-lemmatized case, the removed affixes are

more than it should be, yet it still results on a word that is

existed in database. For example the word “mengurangi”

(literally means “decrease”) should become “kurang”

(literally means “deficient”). Therefore, the algorithm cut the

alphabet „k‟ and the word becomes “urang” (literally means

“tree”). It will be claimed as the output.

For affix removal in the word “pengamat” (literally means

observer), the alphabet „ng‟ should be removed and it

remains the word “amat”. Nevertheless, the alphabet „ng‟ is

not removed and it is replaced by „k‟ so that “amat” becomes

“kamat” (literally means “wood”). It is existed in the

database so “kamat” becomes the lemma of “pengamat”. This

is an under-lemmatized case.

The word “sesuai” (literally means “appropriate”) should

become “suai” after being lemmatized. This is not happened

because the rule precedence implementation to the word

“sesuai” is not suitable. According to the algorithm, the

alphabet „i‟ will be removed first so it remains “sesua”.

Furthermore, the algorithm will remove “se-” so that it

remains the word “sua” (literally means “meet”). Although

this is an incorrect rule implementation, but the word is

existed in the database, so it is claimed as the output.

V. CONCLUSION

From the testing conducted to the algorithm, we conclude

that:

1) By combining two kinds of algorithm; they are affixed

word generator and lemmatization, we can still achieve a

good accuracy as the result.

2) This research has solved the problem in the previous

research. The lemmatization can handle reduplication

and affix removal in affixed words in reduplication form

3) The morphotactic and morphophonemic rules are quite

hard to be implemented in Bahasa. It is because many

heterogeneities and inconsistencies in its language rule.

Inaccuracy in this research happens because of this issue.

International Journal of Knowledge Engineering, Vol. 2, No. 3, September 2016

135

implementation. The sample of errors can be seen in Table II

below.

In fact, some of words constructions in Bahasa are based

on user agreement.

ACKNOWLEDGMENTS

We would like to thank Mrs. Hari Sulastri from Agency of

Language Development of Ministry of Education and Culture

in Indonesia for supporting us about deeper knowledge in

Bahasa. We thanks Bina Nusantara University for the

sponsorship and financial support during conducting this

research from the initial until the publication.

REFERENCES

[1] J. N. Sneddon, The Indonesian Language: Its History and Role in
Modern Society, Australia: University of New South Wales Press,

2003.

[2] G. Kowalski, Information Retrieval Architecture and Algorithms, New
York: Springer, 2011.

[3] A. K. Ingason, S. Helgadóttir, H. Loftsson, and E. Rögnvaldsson, “A

mixed method lemmatization algorithm using a hierarchy of linguistic
identities (HOLI),” Advances in Natural Language Processing,

Lecture Notes in Computer Science, vol. 5221, pp. 205-216, 2008.

[4] D. Jurafsky and J. H. Martin, Speech and Language Processing, New
Jersey: Prentice-Hall, Inc., 2008.

[5] B. Nazief and M. Adriani. “Confix stripping: approach to stemming

algorithm for Bahasa Indonesia,” Technical Report, Faculty of
Computer Science, University of Indonesia, Depok, 1996.

[6] J. Asian, H. E. Williams, and S. M. M. Tahaghoghi, “Stemming

Indonesian,” in Proc. Conferences in Research and Practice in
Information Technology, vol. 38, 2005.

[7] F. Pisceldo, R. Mahendra, R. Manurung, and I. W. Arka. “A two-level

morphological analyzer for the Indonesian language,” Australasian
Language Technology Association Workshop, vol. 6, pp. 142-150,

2008.

[8] S. P. Larasati, V. Kuboˇn, and D. Zeman, “Indonesian morphology tool
(MorphInd): Towards an Indonesian corpus,” Systems and

Frameworks for Computational Morphology, pp. 119-129, 2011.

[9] D. Suhartono, D. Christiandy, and Rolando, “Lemmatization technique

in Bahasa: Indonesian language,” Journal of Software, vol. 9, no. 5, pp.

1-8, 2014.
[10] M. Adriani, J. Asian, B. Nazief, S. M. M. Tahaghoghi, and H. E.

Williams, “Stemming Indonesian: A confix-stripping approach,” ACM

Transactions on Asian Language Information Processing, vol. 6, no. 4,

pp. 1-33, 2007.

Andri Budiman Oktarino was born on October, 10,

1992. He has completed his bachelor degree from

Bina Nusantara University, Jakarta, Indonesia
majoring Computer Science. His interest is in the area

of intelligent system.

Dwi Taruna Winahyu was born on February 24,

1992. He has completed his bachelor degree from
Bina Nusantara University, Jakarta, Indonesia

majoring Computer Science. His interest is in the

area of intelligent system.

Andrew Halim was born on August 26, 1992. He

has completed his bachelor degree from Bina

Nusantara University, Jakarta, Indonesia majoring
Computer Science. His interest is in the area of

intelligent system.

Derwin Suhartono was born on January 24, 1988.
He has completed his bachelor and master degree

majoring computer science in Bina Nusantara
University, Jakarta, Indonesia since 2011.

Currently, he is taking his PhD study in University

of Indonesia. He is a lecturer of intelligent system
field in Bina Nusantara University, Jakarta,

Indonesia. His previous work was as java developer.

He was developing web site for banking and
telecommunication in probably 1 year. His interest is in the area of natural

language processing and intelligent system.

International Journal of Knowledge Engineering, Vol. 2, No. 3, September 2016

136

