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Abstract—Periodic processing of software components is a 

simple reflection of a periodic nature of many real world 

processes where the identical actions are repeated at every given 

period of time. Discovering periodic patterns in the traces of 

computations performed in the past allows for better 

preparation of software systems to meet the demands of high 

workload times in the future. 

This work shows how to discover the periodic patterns in the 

nested logs of computations using the transformations of the 

simple patterns into the complex ones. The paper defines a 

concept of periodic pattern and its validation in a reduced nested 

log of events. A system of derivations rules is defined and 

followed by a sequence of algorithms that use the rules to create 

the complex periodic patterns. The paper is concluded with a 

description of experiment where the sequences SQL statement 

are transformed into the expressions of extended relational 

algebra and used as input data to discover the periodic patterns 

with a method described in the paper. 

 

Index Terms—Periodic patterns, derivation rules, nested 

events, nested logs.  

 

I. INTRODUCTION 

A dynamic performance tuning allows for detection and 

elimination of workload peaks, performance bottlenecks, low 

process throughput, long response time, and the other 

performance related problems at run-time of a software 

system. Effectiveness of dynamic performance tuning 

strongly depends on our abilities to correctly predict the 

future behavior of a software system.  If we know that certain 

data processing tasks are repeated every given period of time 

then to some extent it is possible predict the future behavior of 

a system. Information about the characteristics of the future 

workloads allows for preparation of a software system during 

the low workload times to more efficient processing during 

the high workload time. A typical example is an automated 

physical database design and performance tuning where 

information about the periods of exceptionally low and high 

workload is used by a database system to restructure data, to 

reduce access paths, to cluster the groups of related data, and 

all what prepares a database system for more efficient 

processing in the future [1]. 

The workload peaks and longer periods of very high or 

very low workload are caused by the interferences of 

periodically performed processes and randomly occurring 
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ad-hoc processes reflecting the real world random events. 

One of the ways how workload peaks can be anticipated is 

through the discovery of periodic patterns in the processing of 

software components. Such patterns include information 

about the sequences of processed software components 

obtained from the aggregations of user application logs and 

event logs with the dynamic profiles of software components 

implementing a system. 

Direct discovery of periodic patterns is a complex task due 

to several dimensions over which the patterns can be searched 

for and due to a large size of each dimension. For example, a 

periodic pattern can be defined in a multidimensional space of 

many software components, range dimension that determines 

the locations of periodic patterns in a workload history, and 

periodicity dimension that determines the repetition 

characteristics of a pattern. For large software systems a 

multidimensional space of candidate patterns is still finite, 

however, in practice it is too large for the efficient generation 

and verification of complex patterns. 

A solution proposed in this work is based on an idea that it 

would be much easier and faster to find the simple periodic 

patterns first, and to ”derive” the complex periodic patterns 

from the elementary ones later on. The idea is justified by the 

simplicity of candidate periodic patterns selection process 

and pretty simple set of derivation rules. The solution reduces 

a dimension of complex structures of periodic patterns to the 

elementary patterns based on processing of a single software 

components and it also reduces periodicity dimension to the 

fixed and restricted in size periods between the repetitions of 

simple components. A stage of discovery of elementary 

periodic patterns is followed by the applications of derivation 

rules to create complex periodic patterns that span over the 

longer periods of time and that have complex repetition 

characteristics. The derivations provide both “sure” patterns 

that do not need to be verified in an audit trail as well as 

candidate patterns whose verification needs access to the 

selected parts of workload history. The outcomes from such 

derivations can also be compared with the contents of 

recorded logs in order to eliminate ”noise” created by the 

random processing of accidental applications. 

In this work we adopt a multilevel model of historical 

information used for periodic process mining in [2]. At the 

topmost level we consider the sequences of processes 

performed by the user applications. At a lower level, we 

consider the sequences of events performed by the processes 

and recorded in the event logs. We generalize a concept of 

event to represent processes, events, and operations recorded 

at the different levels of traces, logs, and dynamic profiles. 

Next, we define a model of nested log of events that 

generalizes the applications traces, event logs, and dynamic 
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profiles. We show, that it is possible to transform the 

application traces, events logs, and dynamic profiles into a 

nested event log through comparison of timestamps collected 

from application traces, event logs and dynamic profiles. Data 

preparation starts from partitioning of a period of time over 

which a nested event log was recorded into the disjoint time 

units. The nested events from the application traces, logs, and 

dynamic profiles are extracted from the logs and stored in an 

event table, which represents the hierarchies of events. Each 

event in the table is associated with a set of timestamps 

determining the moments in time when the respective 

complex or elementary events have been computed. An event 

table is further reduced by elimination of the events that 

inherit their properties from their parent events. In the next 

stage we use timestamps associated with the events in a 

reduced table of events and a sequence of disjoint time units 

to create a workload trace that contains information about the 

total number of times each event was processed in each one of 

the assumed time units. We propose a number of derivation 

rules that allow to discover elementary periodic patterns in a 

workload trace and to compose them into the complex 

patterns. A sequence of algorithms applies the derivation 

rules to discover the new periodic patterns. 

The paper is organized in the following way. The next 

section reviews the research works related to processes 

mining, dynamic profiling and discovering periodic patterns.  

Section III defines a model of nested events, time units, and 

workload histograms. In Section IV we present how an event 

table can be created from a sequence of nested events and how 

it can be reduced through elimination of events that inherit 

their patterns from the parent events. Section V defines a 

concept of periodic pattern and its validation in a workload 

histogram. The derivation rules are presented in a Section VI 

and application of the rules to discovery of complex periodic 

patterns is included in a Section VII. An experimental 

implementation of the algorithms and their application to 

analysis audit trails in database systems is described in a 

Section VIII. Finally, Section IX concludes the paper. 

 

II. PREVIOUS WORK 

Elimination of performance bottlenecks from software 

systems through dynamic profiling and analysis of collected 

data has been proposed in [3]. Many different types of profiles 

were tried to analyze the behavior of software systems [4] and 

to improve data flows [5]. A work [6] investigated 

aggregation of the results extracted from a number of large 

dynamic profiles and considered unification of different 

representations of dynamic profiles [7] and [8]. More 

technical information on dynamic profiling can be found in 

[9].  

A starting point to many research studies on discovering 

periodic patterns, cycle pruning, cycle skipping, cycle 

elimination heuristics was a research presented in [10]. The 

works on mining frequent episodes [11], and on mining 

complex episodes [12] extended the works on periodic 

patterns. 

Discovering periodic patterns in event logs appears to be 

quite similar to periodicity mining in time series [13] where 

the long sequences of elementary data items partitioned into a 

number of ranges and associated with the timestamps are 

analyzed to find the cyclic trends. However, due to the 

internal structures of complex events its analysis cannot be 

treated in the same way as analysis of sequences of atomic 

data items like numbers of characters. 

The latest works on discovering periodic patterns address 

the concepts of full periodicity, partial periodicity, perfect and 

imperfect periodicity [14] and the most recently asynchronous 

periodicity [15] and [16]. The works [17] and [18] review a 

class of data mining techniques based on analysis of ordered 

set of operations on data performed by the user applications. 

The model of periodicity considered in this paper is a variant 

of the model introduced in [2] for periodic processes. An 

initial idea and the first system of derivation rules for the 

periodic patterns have been proposed in [19].  

 

III. NESTED LOGS 

A nested log of events is a trace of software system where 

the topmost level contains information about logical 

components of a software system and the lower levels record 

behavior of the lower level software components. In this work, 

we generalize information about the processing of logical and 

lower level software components into a class of nested events. 

A nice example of a nested log of events is a trace from 

processing of SQL statements by a database system. Start of 

processing of SQL statement forms the topmost level in a 

nested log and the operations on data sets and individual 

records up to data blocks form the lower levels in the log.  

 

 

  

    

   

 

    
 

   

 

 

 

 

As a simple example consider the nested logs L(e1:t1), 

L(e2:t2), and L(e2:t3) visualized in a Fig. 1 below. In the 

example a nested log L(e1:t1)=<e11:t1,Ø >, 

<e12:t2,L(e12:t2)>,<e12:t3,L(e12,t3)>, a nested log 
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We consider a period of time <tstart  , tend > over which a 

nested log event is recorded. The period of time is divided 

into a contiguous sequence of disjoint and fixed size 

elementary time units <te
(i)

, τe > where te
(i)

, for i=1,…,n is a 

timestamp when an elementary time unit starts  and τe is a 

length of the unit. The period <tstart , tend > consists of 

elementary time units such that tstart = te
(1)

, and te
(i+1)

= te
(i)

+ τe

and te
(n)

+ τe = tend. 

A time unit <t, τ > consists of one or more consecutive 

elementary time units. A nonempty sequence U of n disjoint 

time units <t
(i)

, τ
(i)

> i=1,…, n over  <tstart , tend > is any 

sequence of time units that satisfies the following properties: 

tstart ≤ t
(1)

and t
(i)

+ τ
(i)

≤ t
(i+1)

and t
(i)

+ τ
(n)

≤ tend.

As a simple example consider a nested log that starts on 

t01:01:2007:0:00am and ends on t31:01:2007:12:00pm. Then, a sequence of 

disjoint time units called as morning tea time consists of the 

following units <t01:01:2007:10:30am, 30 >, <t02:01:2007:10:30am, 

30 >,…, <t31:01:2007:10:30am, 30 >.

Let e be a unique identifier of an event. A nested log of 

processing an event e recorded in a time unit t is denoted by 

L(e:t) and it is a finite and possibly empty sequence of pairs 

<e1:t1, L(e1:t1)>,…, <en:tn, L(en:tn)> where each ei is a unique 

identifier of an event, ti is a time unit when processing of an 

event ei has started, and L(ei:ti) is a nested log of event ei

recorded in a time unit ti. All time units in a log L(e:t) are 

pairwise disjoint. An empty log is denoted by Ø .



  

L(e2:t2)=<e11:t3: Ø >, a nested log L(e2:t3)=<e11:t4:Ø >, 

<e13:t5:Ø >, a nested log L(e12:t2)=<e121:t2, Ø >, and a nested 

log L(e12:t3)=<e121:t3, Ø  >. 
 

 
Fig. 1. The sample structures of nested event log. 

 

Let E be a set of occurrences of events {e1:t1,…, en:tn}. A 

nested log of E is defined as ei:tiE L(ei:ti) and it is denoted 

by L(E). 

A simple observation, that majority of the events usually 

has the same internal structure allows for compression of 

large nested logs. For example, due to processing plan 

stability required by database administrators processing of the 

same SQL statement in different applications accessing the 

same relational tables is usually performed in the same way. 

At the beginning of data preparation stage we transform a 

nested log into more compact event table and later on we 

reduce the table to eliminate events that have the same 

properties. 

A definition of an event table is based on a concept of 

multiset. 

A multiset M is a pair <S, f > where S is a set of values and 

f: S → N
+
 is a function that determines multiplicity of each 

element in S and N
+
 is a set of positive integers [20]. In the 

rest of this paper we shall denote a multiset <e1,..., em , f > 

where f(ei) = ki for i=1,...,m as (e1
k1, ..., em

km). We shall denote 

an empty multiset <Ø , f > as Ø . We shall abbreviate a single 

element multiset (e
k
) as e

k
. 

A signature of an event e is defined as a multiset of events 

included in a nested log L(e:te) and it is denoted by σ(L(e:te)). 

For example, σ(L(e1:t1)) = (e11, e
2

12) in a nested log 

visualized in a Fig. 1 above. 

It is important to note, that the same event recorded in the 

same or different logs may have different signature due to the 

different computational constraints imposed in the different 

moments in time. For example, the computations of 

polymorphic methods in object-oriented programming 

languages may return different signatures, or the 

computations of SELECT statement may return different 

signatures depending on the parameters of a query optimizer 

and the present state of a database. In the example above, the 

signatures of an event e2 are different, i.e. σ(L(e2:t2)) = (e11) 

and σ(L(e2:t3)) = (e11, e13). 

If an event ei contains in its signature an event ej then ei is 

called as a parent event of an event ej. For example, the events 

e1 and e2 are the parent events of event e11. 

An event table eliminates from a nested log all repetitions 

of events which have identical signatures and it is defined as a 

set of triples <e, T, σ (e)> where e is an event, T is a set of time 

units when the event had occurred, and σ(e) is a set of 

signatures of the event. An event table for a nested log 

visualized in Fig.1 is included in Table I. 

The following property allows for further compression of 

event table. Consider an event ei which has only one signature 

(ei
1

n1,…, ei
k

nk ,…, ei
m

nm). If an event ei
k
 has only one parent 

event ei then it means an event ei
k 

happens only when an event 

ei happens. Therefore, an event ei
k
 has the same structure of 

repetitions in a nested log as an event ei and because of that it 

can be eliminated from an event table. For example, in an 

event table above, a multiset of parent events of an event e12 is 

equal to (e1) and only one event e1 has been recorded in a log. 

It means that an event e12 inherits all properties of an event e1. 

An event table can be further reduced through elimination of 

events that occur in every instance of their parent events and 

such that they have only one parent event. 
 

TABLE I: AN EVENT TABLE 

Event Time units Signature 

e1 {t1} (e11, e
2

12) 

e2 {t2} (e11) 

e2 {t3} (e11, e13) 

e11 {t1, t3, t4} Ø  

e12 {t2, t3} (e121) 

e121 {t2, t3} Ø  

e13 {t5} Ø  

 

In the example above, the events e12, e121 occur in all 

instances of one parent event and because of that they can be 

removed from the event table given in a Table I. An event e11 

has two parents (e1, e2
2
) and it cannot be removed. An event 

e13 cannot be removed because it has one parent (e2 ) and does 

not occur in all instances of its single parent because an event 

e2 has two instances in a nested log. A reduced event table is 

given in a Table II. 
 

TABLE II: A REDUCED EVENT TABLE 

Event Time units Signature 

e1 {t1} (e11) 

e2 {t2} (e11) 

e2 {t3} (e11, e13) 

e11 {t1, t2, t3} Ø  

e13 {t5} Ø  

 

IV. WORKLOAD TRACE 

A model of workload trace described in this section is 

based on the model developed earlier for the audit trails in 

database systems [19]. Let |U| denotes the total number of 

time units in U and let U[n] denotes the n-th time unit in U 

where n changes from 1 to |U|. A workload trace of an event e 

is a sequence We of |U| multisets of events such that We[i] = 

(e
k

i) or We[i] = Ø  for i=1,…,|U| and ki ≥ 1 equal to the total 

number of times an event e has been processed in the i-th time 

unit U[i]. 

If an event e occurred in a time unit t then it may happen 

that a period of time when e:t is processed overlaps on one or 

more time units t +1, t +2,… . In this work we consider only 

periodic processing of events determined by the time units 

where each event has started and we ignore its processing 

overlaps on the successive time units. In order to eliminate an 

obviously incorrect classification of an event over time units 

when the event starts at the very end of time unit, e.g. during 

the fraction of seconds just before the end of time unit, and 

almost all of its processing is happens in the successive time 

units we move such event to the next time unit where the 

majority of processing has happened. 
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Let E be a set of all events whose occurrences are recorded 

in a nested log L(E) over time units U and saved in a reduced 

event table. 

A workload trace of a nested log L(E) is denoted by WL and 

WL[i] = ⊎eE We[i], i=1,…,|U|, i.e. it is a multiset union 

(denoted by ⊎ )
 
of workload traces of all events included in 

L(e). 

 

V. PERIODIC PATTERN 

In this work we consider periodic patterns consistent with a 

general model defined as a triple <C, R, P> where: C denotes 

a carrier of a periodic pattern which determines a structure of 

periodically repeated events, computations, queries, etc., R 

denotes a range of periodic repetitions of a carrier measured 

in time units, for example from time unit ti to a time unit tj with 

a possible extension by n time units, P denotes a periodicity 

that determines when the next periodic repetition of a carrier 

may happen, for example after p time units from the latest 

occurrence of  a carrier with possible delay by k time units. 

For example, [19] defines C as a nonempty sequence of 

multisets of syntax trees of relational algebra expressions 

implementing SQL statements, R is a pair of the ordinal 

numbers of time unit where the repetitions of a carrier start 

and end, and P is a total number of time units between two 

adjacent repetition plus one. In [2] C is defined as a multiset e
k
 

of an event e, R is defined as a pair of numbers f:t that 

determine the first and the last repetition of a carrier and P is 

defined as a pair of numbers n:x that determine the minimal 

and maximum distance between any two adjacent repetitions 

of a carrier. 

 

  

 

  

Interpretation of periodic patterns is formalized through the 

following sequence of definitions. Let C be a sequence of 

multisets where |C| ≤ n. A trace of C spanning over n multisets 

and starting at a time unit f where f +|C|-1 ≤ n is denoted by 

tr(C, f, n) and it is defined as sequence of f-1 empty multisets 

followed by a sequence of multisets C and followed by n-(f 

+1)-|C| empty multisets. For example, trace(e1e2
2
,3,5) is a 

sequence of multisets  Ø Ø e1e2
2
Ø . 

Consider a periodic pattern <C, f:t, p>. A trace of the 

periodic pattern over n time units where f +t*p -1+|C| ≤ n is 

denoted by TR(<C,f:t,p>,n) and it is defined as a union       

tr(C, f, n) ⊎1..n tr(C, f +p, n) ⊎1..n … ⊎1..n  tr(C, f +(t -1)*p, n) 

where ⊎1..n denotes multiset union of the respective elements 

of traces from 1 to n. For example, a trace of periodic pattern 

<e1e2
2
, 2:2, 1> over 5 time units is the following union of 

sequences of multisets Ø e1e2
2
Ø Ø   ⊎1..5  Ø Ø e1e2

2
Ø  = 

Ø e1(e1,e2
2
)e2

2
Ø   

In a special case when a value of t = 1 then a value of 

parameter p must be equal to zero, for example, a trace of 

periodic pattern <e1e2
2
, 2:1, 0 > over 5 time units is equal to 

Ø e1e2
2
Ø Ø  . 

In another special case when a value of parameter p = 0 and 

a value of parameter t ≠ 0 a trace of periodic pattern <e1e2
2
, 

2:2, 0 > over 5 time units is equal to Ø e1
2
e2

4
Ø Ø  . 

  

   

For example, a periodic pattern <e1e2
2
, 2:2, 1> is valid in a 

workload trace e1
3
e1(e1

2
,e2

2
)e2

2
Ø  because every element of its 

trace Ø e1(e1,e2
2
)e2

2
Ø  is included in the respective element of 

the workload trace. 

 

VI. DERIVATION RULES 

The derivation rules presented below allow for the logical 

inference of new periodic patterns from a set of periodic 

patterns already identified in a workload trace WL.  

Rule 0 (Normalization) If a periodic pattern <C, f:t, p> is 

valid in a workload WL then a periodic pattern <C', f':t, p> 

such that C' is obtained from C through elimination of all i 

leading empty multisets and all trailing empty multisets and 

such that f' = f +i is valid in WL. Normalization rule allows for 

elimination of leading and/or trailing empty multisets from a 

carrier of a periodic pattern. 

Rule 1 (Synthesis) If the periodic patterns <C, fi:1, 0> and 

<C, fj:1, 0> such that fi ≤ fj are valid in WL then a periodic 

pattern <C, fi:2, fj - fi> is valid in WL. For example, if the 

periodic patterns <e1e2
2
, 2:1, 0> and <e1e2

2
, 5:1, 0> are valid 

in WL then a periodic pattern <e1e2
2
, 2:2, 3> is valid in WL. 

Rule 2 (Extension) If the periodic patterns <C, fi:ti, p> and 

<C, fj:tj, p> are valid in a workload WL and fj = fi +p then a 

periodic pattern <C, fi:ti+tj, p> is valid in WL. For example, if 

a periodic pattern <e1e2
2
, 2:2, 3> obtained from application of 

the synthesis rule in the previous example and periodic pattern 

<e1e2
2
, 7:1, 0> are valid in a workload trace WL then a 

periodic pattern <e1e2
2
, 1:3, 3> is valid in WL. 

Rule 3 (Restriction) If a periodic pattern <C, f:t, p> is valid 

in a workload WL then a periodic pattern <C, f ':t', p> such 

that f ' =f+(n-1)*p for n = 1,…,t and t' such that f ' + (t'-1)*p 

≤|U| is valid in WL. For example, if a periodic pattern <e1e2
2
, 

2:4, 3 > is valid in WL then a periodic pattern <e1e2
2
, 5:2, 3 > 

obtained through the elimination of the first and the last cycle 

is valid in WL. 

Rule 4 (Decomposition) If a periodic pattern <C, f:t, p> is 

valid in a workload WL then a periodic pattern <C', f ':t, p> 

such that a carrier C' is obtained from a carrier C by 

elimination of any multiset from any element of a carrier C 

and if there are any leading or trailing empty multisets in C' 

elimination of all i leading empty multisets and all trailing 

empty multisets from C'  is valid in WL. For example, if a 

periodic pattern <e1e2
2
, 2:5, 1> is valid in WL then a periodic 

pattern <e2, 3:5, 1> obtained through the elimination e1 from 

the first element and e2 from the second element of a carrier 

e1e2
2
 is valid in WL. 

Rule 5 (Composition) If the periodic patterns <Ci, fi:t, p > 

and <Cj, fj:t, p> are valid in a workload WL and fi ≤ fj then a 

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

226

In this work we consider a simplified version of periodicity

model used in [2]. A periodic pattern is defined as a triple <C, 

f:t, p> where a carrier C is a nonempty sequence of at least 

one nonempty multisets of events, a range f:t, is a pair of from

and total natural numbers, and periodicity p is a natural 

number. Additionally the values of f:t and p satisfy the 

conditions f ≥ 1 and t ≥ 1 and p ≥ 0 and f +(t -1) *p +|C| -1 ≤ 

|U | and if t =1 then p =0.

Let WL be a workload trace of a nested log L. We say, that a 

periodic pattern <C, f:t, p> is valid in a workload histogram

WL recorded over time units U if TR(<C,f:t,p> ,|U|)[i]  WL[i]

for i=1,…,|U|, in the other words if every element of trace of 

the pattern over |U| time units is included in the respective 

element of a workload WL.



  

periodic pattern <Ck, fi:t, p > where Ck=tr(Ci, 1, fj - fi + |Cj|) 

⊎1..p tr(Cj, fj - fi, fj - fi +|Cj|) is valid in WL. For example, if the 

periodic patterns <e1e2
2
, 1:3, 4 > and periodic pattern <e1, 4:3, 

4> are valid in a workload trace WL then a periodic pattern 

<e1e2
2
Ø e1, 1:3, 4> is valid in WL. 

Rule 6 (Grouping) If a periodic pattern <C, f:t, p > is valid 

in a workload WL then for any n=1,...,t such that t mod n = 0 a 

periodic pattern <C', f:t/n, p*n > such that a carrier C' = 

TR(<C, f:t, p>,(n-1)*p+|C|)) is valid in WL. For example, if a 

periodic pattern <e1e2
2
, 1:4, 3> is valid in WL then a periodic 

pattern <e1e2
2
Ø e1e2

2
, 1:2, 6> is valid in WL. 

Grouping and composition derivation rules can be used to 

combine two periodic patterns with different carriers, ranges 

and periodicity. As a simple example consider the periodic 

patterns <e1e2
2
, 1:4, 3> and <e3, 3:6, 2>. To apply the 

composition rule the parameters t and p must be the same. To 

find a common p we find the least common multiplier of the 

periods of the patterns, i.e. lcm(2,3) = 6. Then, we apply the 

grouping rule to transform a pattern <e1e2
2
, 1:4, 3> into 

<e1e2
2
Ø e1e2

2
, 1:2, 6> and pattern <e3, 3:6, 2> into 

<e3Ø e3Ø e3, 3:2, 6>. Now, application of the composition rule 

provides a periodic pattern <e1e2
2
e3e1(e2

2
,e3)Ø e3, 1:2, 6>. 

 

VII. DISCOVERING PERIODIC PATTERNS 

Let P be a set of periodic patterns and let R be a set of 

derivation rules presented in the previous section. We denote 

by P R P' a fact that a set of periodic patterns P' can be 

derived by from a set of patterns P using a set of derivation 

rules R presented in the previous section. We say that the sets 

of periodic patterns Pi and Pj are equivalent if Pi T Pj and    

Pj T Pi. Discovering the complex periodic patterns is 

performed through application of the following sequence of 

algorithms.  

A. Algorithm 1 

A periodic pattern <C, f:t, p > is called as an elementary 

periodic pattern when C=e and p =1. The following 

algorithm finds the elementary periodic patterns <e, f:t, 1> in 

a workload trace WL for a given event e.  

1) Make a multiset of elementary periodic patterns P(e) 

empty. 

2) Iterate over the elements of a workload trace WL from the 

first to the last element. Set the first available element in 

WL to 1. 

 

 

 

 Append a periodic pattern <e, f:t, 1> to a multiset P(e). 

 Modify the entries in a workload trace WL in the 

following way: 

WL[f]:=WL[f]-e, WL[f+1]:=WL[f+1]-e,...,WL[f+t-1]: = 

WL[f+t-1]-e. Such modification is needed to eliminate an 

impact of a periodic pattern <e, f:t, 1> on a workload trace WL. 

Next, we set the first available element in WL to k=f +t and if 

its greater than |WL| move to step (3), otherwise continue step 

(2) from (2.1). 

3) If at least one new pattern has been added in the latest 

pass through WL then move to step (2), otherwise quit the 

algorithm. 

Algorithm 1 is repeated for all events in {e1,...,en} until no 

new elementary patterns can be found. As the result, we 

obtain the multisets of periodic patterns P(e1),...,P(en). In a 

special case it is possible to consider an entire workload trace 

WL as a carrier of a periodic pattern <WL, 1:1, 0>. Then, 

Algorithm 1 is a simple application of the decomposition rule 

to the pattern and later on the synthesis and extension rules to 

create the patterns where p = 1. 

B. Algorithm 2 

The next algorithm applies a composition rule to the 

elementary periodic patterns separately in each P(e1),...,P(en) 

to create new patterns.  

1) Find all pairs of periodic patterns <e
k

i, f:t, 1> and <e
k

j, f:t, 

1> in P(e) and replace each pair with a periodic pattern 

<e
k

i
+k

j, f:t, 1>. 

2) Repeat step (1) until no new periodic patterns can be 

created. 

Algorithm 2 is repeated for all sets of periodic patterns 

P(e1),...,P(en). 

C. Algorithm 3 

The next algorithm applies the synthesis rule to the periodic 

patterns separately in each P(e1),...,P(en) obtained from the 

previous step to create new patterns. 

1) Find a sequence of at least two periodic patterns <e
k
, f1:t, 

1>, ..., <e
k
, fn:t, 1> in P(e) such that fi+1-fi is the same for 

i=1,..., n-1. 

If a sequence cannot be found then quit the algorithm. 

2) Apply the grouping rule to transform each pattern in the 

sequence into <e
k
... e

k
, f1:1, 0>,...,<e

k
... e

k
, fn:1, 0> 

where a multiset e
k
 in a carrier are repeated t times. 

3) Apply the synthesis and extension rules to transform the 

sequence into a periodic pattern <e
k
... e

k
, f1:t, fj-fi> and 

replace the sequence with a derived pattern. 

4) Repeat the steps (2) and (3) until no new periodic 

patterns can be created. 

Algorithm 3 is repeated for all sets of periodic patterns 

P(e1),...,P(en). 

D. Algorithm 4 

Finally, the last algorithm applies the composition rule to all 

periodic patterns from a multiset P(E)=P(e1) ⊎ … ⊎ P(en).  

1) Find a pair of periodic patterns <Ci, fi:t, pi > and <Cj, fj:t, 

pj > included in P(E) and fi ≤ fj and such that the patterns 

overlap more than a given overlap threshold omax  

determined as fj - fi ≤ omax.  

Application of the restriction rule may be required to adjust 

the total number of cycles in the patterns to a common value t. 

The rule is applied only if one of the patterns returned is 

shorter than a given percentage of the total number of cycles 

of the original pattern, e.g. it consist of less than 20 percent of 

the total number of cycles of the original pattern. 

2) Apply the grouping rule to each element of the pair such 

the derived patterns have a common value of parameter p, 

i.e, <C'i, fi:t', p> and <C'j, fj:t', p>. 

3) Apply the composition rule to the patterns <C'i, fi:t', p> 

and <C'j, fj:t', p> to create a complex pattern <Ck, fi:t', 
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 Find the smallest index greater or equal to an index of the 

first available element in WL such that e  WL[f] and 

record in t the total number of adjacent elements in a 

workload histogram such that each element includes e.



  

 

 

 

 

  

  

 

  

 

 

  

 

 

VIII. EXPERIMENT 

The main objective of the experiments was to estimate the 

quality of the proposed system of derivation rules and strategy 

of their application as a sequence of algorithms transforming 

the periodic patterns. As a measure of quality we used a ratio 

of the total number of single cycle periodic patterns obtained 

after all derivations to the total number of time units in a 

workload trace. 

As a sample nested log of events, we used a transformed 

audit trail obtained from the monitoring of a synthetic 

database load generator running against “of-the shelf'” 

commercial relational database management system. An audit 

trail is a sequence of SQL statements with associated 

processing timestamps. The sequence becomes the topmost 

level of a nested log. At the lower levels each SQL statement 

is transformed with EXPLAIN PLAN statement into a syntax 

tree of an extended relational algebra expression. The 

operations of the expression form the events in a nested log. 

At the lowest level in a nested log the operations of read/write 

data block are associated with the timestamps obtained from 

SQL trace of the statements included in an audit trail. 

The database load generator created a sequence of 

SELECT statements that access a sample TPC H benchmark 

relational database. The stream was audited and audit trail 

consisting of SELECT statements and respective timestamps 

was saved. At period of time over which an audit trail was 

collected was divided into a given number of adjacent time 

units U and SELECT statements included in the audit were 

assigned to the time units in U. In a perfect case there should 

be no single cycle periodic patterns after all derivations. It 

means that the algorithms implementing the derivations rules 

and transformation strategies are able to attach every entry in 

a workload trace to one of periodically performed actions.  

To obtain an input data set consistent with a model of 

nested log of events EXPLAIN PLAN statement was applied 

to each SELECT statement included in the trail to get the 

syntax trees of extended relational algebra expressions 

implementing the statements together with information about 

their timestamps. A root of each syntax tree represented the 

topmost event, the nodes with the operations of extended 

relational algebra represented the nested events, and the leaf 

level nodes represented elementary events with empty logs. 

The syntax trees were used to create event tree table and later 

on reduced events tree table in a way described earlier in the 

paper.  

Application of synthetic workload generator allowed us to 

generate the periodic processing of database tasks with the 

earlier determined parameters such that the trace of periodic 

processing could be easily compared with the results of 

derivations. The main component of a single instance of the 

generator was a process that iteratively submitted for 

processing a given sequence of SELECT statements in a given 

period of time. The process could be nested such practically 

any periodic processing could be obtained in Unix 

environment. 

All software was implemented in SQL embedded in a host 

language of the database management system used. The 

software was parameterized in a number of dimensions. First, 

a period of time over which an audit is performed could be 

divided into a given number of disjoint and adjacent time 

units with an earlier determined length of each time unit. A 

synthetic workload can be easily reconfigured through 

addition and/or removal of Unix shell scripts running 

periodically processed SQL scripts. The minimal total 

number of elements in the sequences of periodic patterns 

processed by Algorithm 3 was parameterized to avoid the 

derivations of periodic patterns with a low number of cycles 

and long carriers. Finally, an overlap parameter that 

determines the maximum distance between the first cycles of 

the composed periodic pattern was enforced in 

implementation of Algorithm 4 to eliminate the compositions 

of periodic patterns whose first cycles are not close enough. 

The experiments performed on the synthetically generated 

workloads proved, that on average it is possible to reduce the 

initial number of elementary periodic patterns obtained 

directly from a workload trace to total 10% of the total 

number of elementary patterns. The total number of 

"leftovers", i.e. executions of syntax trees not assigned to any 

pattern is not larger than 5% of the total size of workload trace. 

Application of the composition rule allows for creation of 

complex periodic patterns, however, frequent application of 

compositions increases the length of a carrier and in the same 

moment reduces the total number of cycles in the derived 

patterns. 

 

IX. SUMMARY AND FUTURE WORK 

This works shows that it is possible to derive the complex 

periodic patterns of events from information recorded in the 

nested event logs and from elementary periodic patterns. A 

formal model of nested logs of events aggregates information 
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p>.

4) Replace the original pair of patterns with a pattern 

obtained in the previous step.

5) Repeat the steps above until no new periodic patterns can 

be created.

The following simple example shows how the derivation 

rules implemented with each algorithm above transform the 

periodic patterns. We start from a workload trace 

WL=e1
2
(e1,e2)e1

2
(e1,e2)e1.

Algorithm 1 transforms a pattern <WL, 1:1, 0 > into the 

following six patterns p1=<e1, 1:5, 1 >, p2=<e1, 1:1, 0 >, 

p3=<e1, 3:1, 0 >, p4=<e1, 5:1, 0 >, p5=<e2, 2:1, 0 >, and 

p6=<e2, 4:1, 0 >.

Algorithm 2 does not transform any periodic patterns.

Algorithm 3 transforms the patterns p2,...,p6 into the 

patterns p7 = <e1, 1:2, 2 > and p8 = <e2, 2:2, 2 >.

Algorithm 4 uses the composition rule to transform p7 and 

p8 into p11 = <e1e2, 1:2, 2 >.

Then, it uses the restriction rule to transform a pattern p1

into the patterns p9 = <e1, 1:4, 1> and p10 = <e1, 5:1, 0>.

The grouping rule is used to transform p9 into p12 = <e1e1, 

1:2, 2>.

Finally, the composition rule is used again to transform p11

and p12 into the result p13 =<e1
2
(e1,e2), 1:2, 2>.

At the end a set of patterns p10, p13 is equivalent to a 

workload trace WL. 



  

extracted from the application traces, event logs and dynamic 

profiles. Then, a nested log of events is transformed into a 

workload trace that binds the events with a predefined set of 

time units. A system of derivation rules is used to create the 

complex periodic patterns from the elementary ones in the 

following way. First, a sequence of algorithms applies the 

derivations rules to transform a workload trace into a 

collection of elementary periodic patterns. Next, the 

derivation rules are used to transform the elementary periodic 

patterns into the complex periodic patterns. An experiment 

that processes information included in the database audit 

trails is verifies the concept and it estimates the quality of 

discovery process implemented as a sequence of derivations. 

The approach presented in the paper tries to reduce the 

complexity of search for periodic patterns through discovery 

of single event patterns and later on creation of more 

sophisticated patterns through application of derivation rules. 

The important aspects of such approach are logical 

correctness and completeness of a given system of derivation 

rules. Correctness of the derivation rules can be easily proved 

directly from a definition of validity of periodic pattern in a 

workload trace. We argue that the system of rules is complete 

for an interpretation of periodic pattern described in the paper 

because if a workload trace contains a pre-specified periodic 

pattern then decomposition of workload trace into elementary 

patterns and later on application of the rules always restores 

the original pattern. 

A formal model of periodic patterns considered in the 

paper assumes that all cycles of a pattern are always processed 

with the same periodicity and none of them fails. In the reality, 

it may happen that a cycle is not processed due to some 

random reasons or it is delayed such that it happens in one of 

the following time units. An interesting research objective is a 

set of rules that can further enhance the periodic patterns 

obtained from the algorithms described in the paper, for 

example the rules which can be used to derive complex and 

imperfect periodic patterns. Such system of derivation rules 

should be able to detect the cases when some cycles are 

missing or delayed to another time unit. 

Another interesting extension is the best choice of time 

units over the workload traces. At the moment, a completely 

arbitrarily selection of time units may result with either too 

fine or to coarse granulation of time and in a consequence it 

may distort the periodic patterns. Too long time units may 

result with the continuous periodic patterns where every 

element of workload histogram is included in a pattern. Too 

short time units may provide periodic patterns with low level 

of quality indicators such as regularity and density. A 

mechanism is needed to find the most appropriate granulation 

of time for the parameters of a given event log. 
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