



Abstract—Periodic processing of software components is a

simple reflection of a periodic nature of many real world

processes where the identical actions are repeated at every given

period of time. Discovering periodic patterns in the traces of

computations performed in the past allows for better

preparation of software systems to meet the demands of high

workload times in the future.

This work shows how to discover the periodic patterns in the

nested logs of computations using the transformations of the

simple patterns into the complex ones. The paper defines a

concept of periodic pattern and its validation in a reduced nested

log of events. A system of derivations rules is defined and

followed by a sequence of algorithms that use the rules to create

the complex periodic patterns. The paper is concluded with a

description of experiment where the sequences SQL statement

are transformed into the expressions of extended relational

algebra and used as input data to discover the periodic patterns

with a method described in the paper.

Index Terms—Periodic patterns, derivation rules, nested

events, nested logs.

I. INTRODUCTION

A dynamic performance tuning allows for detection and

elimination of workload peaks, performance bottlenecks, low

process throughput, long response time, and the other

performance related problems at run-time of a software

system. Effectiveness of dynamic performance tuning

strongly depends on our abilities to correctly predict the

future behavior of a software system. If we know that certain

data processing tasks are repeated every given period of time

then to some extent it is possible predict the future behavior of

a system. Information about the characteristics of the future

workloads allows for preparation of a software system during

the low workload times to more efficient processing during

the high workload time. A typical example is an automated

physical database design and performance tuning where

information about the periods of exceptionally low and high

workload is used by a database system to restructure data, to

reduce access paths, to cluster the groups of related data, and

all what prepares a database system for more efficient

processing in the future [1].

The workload peaks and longer periods of very high or

very low workload are caused by the interferences of

periodically performed processes and randomly occurring

Manuscript received April 30, 2015; revised September 8, 2015.

J. R. Getta is with the School of Computing and Information Technology,

University of Wollongong, Wollongong, NSW 2530, Australia (e-mail:

jrg@uow.edu.au).

M. Zimniak is with Faculty of Computer Science, TU Chemnitz,

Chemnitz, Germany (e-mail: marcin.zimniak@cs.tu-chemnitz.de).

ad-hoc processes reflecting the real world random events.

One of the ways how workload peaks can be anticipated is

through the discovery of periodic patterns in the processing of

software components. Such patterns include information

about the sequences of processed software components

obtained from the aggregations of user application logs and

event logs with the dynamic profiles of software components

implementing a system.

Direct discovery of periodic patterns is a complex task due

to several dimensions over which the patterns can be searched

for and due to a large size of each dimension. For example, a

periodic pattern can be defined in a multidimensional space of

many software components, range dimension that determines

the locations of periodic patterns in a workload history, and

periodicity dimension that determines the repetition

characteristics of a pattern. For large software systems a

multidimensional space of candidate patterns is still finite,

however, in practice it is too large for the efficient generation

and verification of complex patterns.

A solution proposed in this work is based on an idea that it

would be much easier and faster to find the simple periodic

patterns first, and to ”derive” the complex periodic patterns

from the elementary ones later on. The idea is justified by the

simplicity of candidate periodic patterns selection process

and pretty simple set of derivation rules. The solution reduces

a dimension of complex structures of periodic patterns to the

elementary patterns based on processing of a single software

components and it also reduces periodicity dimension to the

fixed and restricted in size periods between the repetitions of

simple components. A stage of discovery of elementary

periodic patterns is followed by the applications of derivation

rules to create complex periodic patterns that span over the

longer periods of time and that have complex repetition

characteristics. The derivations provide both “sure” patterns

that do not need to be verified in an audit trail as well as

candidate patterns whose verification needs access to the

selected parts of workload history. The outcomes from such

derivations can also be compared with the contents of

recorded logs in order to eliminate ”noise” created by the

random processing of accidental applications.

In this work we adopt a multilevel model of historical

information used for periodic process mining in [2]. At the

topmost level we consider the sequences of processes

performed by the user applications. At a lower level, we

consider the sequences of events performed by the processes

and recorded in the event logs. We generalize a concept of

event to represent processes, events, and operations recorded

at the different levels of traces, logs, and dynamic profiles.

Next, we define a model of nested log of events that

generalizes the applications traces, event logs, and dynamic

Deriving Complex Periodic Patterns from Nested Logs of

Events

Janusz R. Getta and Marcin Zimniak

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

223doi: 10.18178/ijke.2015.1.3.039

profiles. We show, that it is possible to transform the

application traces, events logs, and dynamic profiles into a

nested event log through comparison of timestamps collected

from application traces, event logs and dynamic profiles. Data

preparation starts from partitioning of a period of time over

which a nested event log was recorded into the disjoint time

units. The nested events from the application traces, logs, and

dynamic profiles are extracted from the logs and stored in an

event table, which represents the hierarchies of events. Each

event in the table is associated with a set of timestamps

determining the moments in time when the respective

complex or elementary events have been computed. An event

table is further reduced by elimination of the events that

inherit their properties from their parent events. In the next

stage we use timestamps associated with the events in a

reduced table of events and a sequence of disjoint time units

to create a workload trace that contains information about the

total number of times each event was processed in each one of

the assumed time units. We propose a number of derivation

rules that allow to discover elementary periodic patterns in a

workload trace and to compose them into the complex

patterns. A sequence of algorithms applies the derivation

rules to discover the new periodic patterns.

The paper is organized in the following way. The next

section reviews the research works related to processes

mining, dynamic profiling and discovering periodic patterns.

Section III defines a model of nested events, time units, and

workload histograms. In Section IV we present how an event

table can be created from a sequence of nested events and how

it can be reduced through elimination of events that inherit

their patterns from the parent events. Section V defines a

concept of periodic pattern and its validation in a workload

histogram. The derivation rules are presented in a Section VI

and application of the rules to discovery of complex periodic

patterns is included in a Section VII. An experimental

implementation of the algorithms and their application to

analysis audit trails in database systems is described in a

Section VIII. Finally, Section IX concludes the paper.

II. PREVIOUS WORK

Elimination of performance bottlenecks from software

systems through dynamic profiling and analysis of collected

data has been proposed in [3]. Many different types of profiles

were tried to analyze the behavior of software systems [4] and

to improve data flows [5]. A work [6] investigated

aggregation of the results extracted from a number of large

dynamic profiles and considered unification of different

representations of dynamic profiles [7] and [8]. More

technical information on dynamic profiling can be found in

[9].

A starting point to many research studies on discovering

periodic patterns, cycle pruning, cycle skipping, cycle

elimination heuristics was a research presented in [10]. The

works on mining frequent episodes [11], and on mining

complex episodes [12] extended the works on periodic

patterns.

Discovering periodic patterns in event logs appears to be

quite similar to periodicity mining in time series [13] where

the long sequences of elementary data items partitioned into a

number of ranges and associated with the timestamps are

analyzed to find the cyclic trends. However, due to the

internal structures of complex events its analysis cannot be

treated in the same way as analysis of sequences of atomic

data items like numbers of characters.

The latest works on discovering periodic patterns address

the concepts of full periodicity, partial periodicity, perfect and

imperfect periodicity [14] and the most recently asynchronous

periodicity [15] and [16]. The works [17] and [18] review a

class of data mining techniques based on analysis of ordered

set of operations on data performed by the user applications.

The model of periodicity considered in this paper is a variant

of the model introduced in [2] for periodic processes. An

initial idea and the first system of derivation rules for the

periodic patterns have been proposed in [19].

III. NESTED LOGS

A nested log of events is a trace of software system where

the topmost level contains information about logical

components of a software system and the lower levels record

behavior of the lower level software components. In this work,

we generalize information about the processing of logical and

lower level software components into a class of nested events.

A nice example of a nested log of events is a trace from

processing of SQL statements by a database system. Start of

processing of SQL statement forms the topmost level in a

nested log and the operations on data sets and individual

records up to data blocks form the lower levels in the log.

As a simple example consider the nested logs L(e1:t1),

L(e2:t2), and L(e2:t3) visualized in a Fig. 1 below. In the

example a nested log L(e1:t1)=<e11:t1,Ø >,

<e12:t2,L(e12:t2)>,<e12:t3,L(e12,t3)>, a nested log

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

224

We consider a period of time <tstart , tend > over which a

nested log event is recorded. The period of time is divided

into a contiguous sequence of disjoint and fixed size

elementary time units <te
(i)

, τe > where te
(i)

, for i=1,…,n is a

timestamp when an elementary time unit starts and τe is a

length of the unit. The period <tstart , tend > consists of

elementary time units such that tstart = te
(1)

, and te
(i+1)

= te
(i)

+ τe

and te
(n)

+ τe = tend.

A time unit <t, τ > consists of one or more consecutive

elementary time units. A nonempty sequence U of n disjoint

time units <t
(i)

, τ
(i)

> i=1,…, n over <tstart , tend > is any

sequence of time units that satisfies the following properties:

tstart ≤ t
(1)

and t
(i)

+ τ
(i)

≤ t
(i+1)

and t
(i)

+ τ
(n)

≤ tend.

As a simple example consider a nested log that starts on

t01:01:2007:0:00am and ends on t31:01:2007:12:00pm. Then, a sequence of

disjoint time units called as morning tea time consists of the

following units <t01:01:2007:10:30am, 30 >, <t02:01:2007:10:30am,

30 >,…, <t31:01:2007:10:30am, 30 >.

Let e be a unique identifier of an event. A nested log of

processing an event e recorded in a time unit t is denoted by

L(e:t) and it is a finite and possibly empty sequence of pairs

<e1:t1, L(e1:t1)>,…, <en:tn, L(en:tn)> where each ei is a unique

identifier of an event, ti is a time unit when processing of an

event ei has started, and L(ei:ti) is a nested log of event ei

recorded in a time unit ti. All time units in a log L(e:t) are

pairwise disjoint. An empty log is denoted by Ø .

L(e2:t2)=<e11:t3: Ø >, a nested log L(e2:t3)=<e11:t4:Ø >,

<e13:t5:Ø >, a nested log L(e12:t2)=<e121:t2, Ø >, and a nested

log L(e12:t3)=<e121:t3, Ø >.

Fig. 1. The sample structures of nested event log.

Let E be a set of occurrences of events {e1:t1,…, en:tn}. A

nested log of E is defined as ei:tiE L(ei:ti) and it is denoted

by L(E).

A simple observation, that majority of the events usually

has the same internal structure allows for compression of

large nested logs. For example, due to processing plan

stability required by database administrators processing of the

same SQL statement in different applications accessing the

same relational tables is usually performed in the same way.

At the beginning of data preparation stage we transform a

nested log into more compact event table and later on we

reduce the table to eliminate events that have the same

properties.

A definition of an event table is based on a concept of

multiset.

A multiset M is a pair <S, f > where S is a set of values and

f: S → N
+
 is a function that determines multiplicity of each

element in S and N
+
 is a set of positive integers [20]. In the

rest of this paper we shall denote a multiset <e1,..., em , f >

where f(ei) = ki for i=1,...,m as (e1
k1, ..., em

km). We shall denote

an empty multiset <Ø , f > as Ø . We shall abbreviate a single

element multiset (e
k
) as e

k
.

A signature of an event e is defined as a multiset of events

included in a nested log L(e:te) and it is denoted by σ(L(e:te)).

For example, σ(L(e1:t1)) = (e11, e
2

12) in a nested log

visualized in a Fig. 1 above.

It is important to note, that the same event recorded in the

same or different logs may have different signature due to the

different computational constraints imposed in the different

moments in time. For example, the computations of

polymorphic methods in object-oriented programming

languages may return different signatures, or the

computations of SELECT statement may return different

signatures depending on the parameters of a query optimizer

and the present state of a database. In the example above, the

signatures of an event e2 are different, i.e. σ(L(e2:t2)) = (e11)

and σ(L(e2:t3)) = (e11, e13).

If an event ei contains in its signature an event ej then ei is

called as a parent event of an event ej. For example, the events

e1 and e2 are the parent events of event e11.

An event table eliminates from a nested log all repetitions

of events which have identical signatures and it is defined as a

set of triples <e, T, σ (e)> where e is an event, T is a set of time

units when the event had occurred, and σ(e) is a set of

signatures of the event. An event table for a nested log

visualized in Fig.1 is included in Table I.

The following property allows for further compression of

event table. Consider an event ei which has only one signature

(ei
1

n1,…, ei
k

nk ,…, ei
m

nm). If an event ei
k
 has only one parent

event ei then it means an event ei
k

happens only when an event

ei happens. Therefore, an event ei
k
 has the same structure of

repetitions in a nested log as an event ei and because of that it

can be eliminated from an event table. For example, in an

event table above, a multiset of parent events of an event e12 is

equal to (e1) and only one event e1 has been recorded in a log.

It means that an event e12 inherits all properties of an event e1.

An event table can be further reduced through elimination of

events that occur in every instance of their parent events and

such that they have only one parent event.

TABLE I: AN EVENT TABLE

Event Time units Signature

e1 {t1} (e11, e
2

12)

e2 {t2} (e11)

e2 {t3} (e11, e13)

e11 {t1, t3, t4} Ø

e12 {t2, t3} (e121)

e121 {t2, t3} Ø

e13 {t5} Ø

In the example above, the events e12, e121 occur in all

instances of one parent event and because of that they can be

removed from the event table given in a Table I. An event e11

has two parents (e1, e2
2
) and it cannot be removed. An event

e13 cannot be removed because it has one parent (e2) and does

not occur in all instances of its single parent because an event

e2 has two instances in a nested log. A reduced event table is

given in a Table II.

TABLE II: A REDUCED EVENT TABLE

Event Time units Signature

e1 {t1} (e11)

e2 {t2} (e11)

e2 {t3} (e11, e13)

e11 {t1, t2, t3} Ø

e13 {t5} Ø

IV. WORKLOAD TRACE

A model of workload trace described in this section is

based on the model developed earlier for the audit trails in

database systems [19]. Let |U| denotes the total number of

time units in U and let U[n] denotes the n-th time unit in U

where n changes from 1 to |U|. A workload trace of an event e

is a sequence We of |U| multisets of events such that We[i] =

(e
k

i) or We[i] = Ø for i=1,…,|U| and ki ≥ 1 equal to the total

number of times an event e has been processed in the i-th time

unit U[i].

If an event e occurred in a time unit t then it may happen

that a period of time when e:t is processed overlaps on one or

more time units t +1, t +2,… . In this work we consider only

periodic processing of events determined by the time units

where each event has started and we ignore its processing

overlaps on the successive time units. In order to eliminate an

obviously incorrect classification of an event over time units

when the event starts at the very end of time unit, e.g. during

the fraction of seconds just before the end of time unit, and

almost all of its processing is happens in the successive time

units we move such event to the next time unit where the

majority of processing has happened.

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

225

Let E be a set of all events whose occurrences are recorded

in a nested log L(E) over time units U and saved in a reduced

event table.

A workload trace of a nested log L(E) is denoted by WL and

WL[i] = ⊎eE We[i], i=1,…,|U|, i.e. it is a multiset union

(denoted by ⊎)

of workload traces of all events included in

L(e).

V. PERIODIC PATTERN

In this work we consider periodic patterns consistent with a

general model defined as a triple <C, R, P> where: C denotes

a carrier of a periodic pattern which determines a structure of

periodically repeated events, computations, queries, etc., R

denotes a range of periodic repetitions of a carrier measured

in time units, for example from time unit ti to a time unit tj with

a possible extension by n time units, P denotes a periodicity

that determines when the next periodic repetition of a carrier

may happen, for example after p time units from the latest

occurrence of a carrier with possible delay by k time units.

For example, [19] defines C as a nonempty sequence of

multisets of syntax trees of relational algebra expressions

implementing SQL statements, R is a pair of the ordinal

numbers of time unit where the repetitions of a carrier start

and end, and P is a total number of time units between two

adjacent repetition plus one. In [2] C is defined as a multiset e
k

of an event e, R is defined as a pair of numbers f:t that

determine the first and the last repetition of a carrier and P is

defined as a pair of numbers n:x that determine the minimal

and maximum distance between any two adjacent repetitions

of a carrier.

Interpretation of periodic patterns is formalized through the

following sequence of definitions. Let C be a sequence of

multisets where |C| ≤ n. A trace of C spanning over n multisets

and starting at a time unit f where f +|C|-1 ≤ n is denoted by

tr(C, f, n) and it is defined as sequence of f-1 empty multisets

followed by a sequence of multisets C and followed by n-(f

+1)-|C| empty multisets. For example, trace(e1e2
2
,3,5) is a

sequence of multisets Ø Ø e1e2
2
Ø .

Consider a periodic pattern <C, f:t, p>. A trace of the

periodic pattern over n time units where f +t*p -1+|C| ≤ n is

denoted by TR(<C,f:t,p>,n) and it is defined as a union

tr(C, f, n) ⊎1..n tr(C, f +p, n) ⊎1..n … ⊎1..n tr(C, f +(t -1)*p, n)

where ⊎1..n denotes multiset union of the respective elements

of traces from 1 to n. For example, a trace of periodic pattern

<e1e2
2
, 2:2, 1> over 5 time units is the following union of

sequences of multisets Ø e1e2
2
Ø Ø ⊎1..5 Ø Ø e1e2

2
Ø =

Ø e1(e1,e2
2
)e2

2
Ø

In a special case when a value of t = 1 then a value of

parameter p must be equal to zero, for example, a trace of

periodic pattern <e1e2
2
, 2:1, 0 > over 5 time units is equal to

Ø e1e2
2
Ø Ø .

In another special case when a value of parameter p = 0 and

a value of parameter t ≠ 0 a trace of periodic pattern <e1e2
2
,

2:2, 0 > over 5 time units is equal to Ø e1
2
e2

4
Ø Ø .

For example, a periodic pattern <e1e2
2
, 2:2, 1> is valid in a

workload trace e1
3
e1(e1

2
,e2

2
)e2

2
Ø because every element of its

trace Ø e1(e1,e2
2
)e2

2
Ø is included in the respective element of

the workload trace.

VI. DERIVATION RULES

The derivation rules presented below allow for the logical

inference of new periodic patterns from a set of periodic

patterns already identified in a workload trace WL.

Rule 0 (Normalization) If a periodic pattern <C, f:t, p> is

valid in a workload WL then a periodic pattern <C', f':t, p>

such that C' is obtained from C through elimination of all i

leading empty multisets and all trailing empty multisets and

such that f' = f +i is valid in WL. Normalization rule allows for

elimination of leading and/or trailing empty multisets from a

carrier of a periodic pattern.

Rule 1 (Synthesis) If the periodic patterns <C, fi:1, 0> and

<C, fj:1, 0> such that fi ≤ fj are valid in WL then a periodic

pattern <C, fi:2, fj - fi> is valid in WL. For example, if the

periodic patterns <e1e2
2
, 2:1, 0> and <e1e2

2
, 5:1, 0> are valid

in WL then a periodic pattern <e1e2
2
, 2:2, 3> is valid in WL.

Rule 2 (Extension) If the periodic patterns <C, fi:ti, p> and

<C, fj:tj, p> are valid in a workload WL and fj = fi +p then a

periodic pattern <C, fi:ti+tj, p> is valid in WL. For example, if

a periodic pattern <e1e2
2
, 2:2, 3> obtained from application of

the synthesis rule in the previous example and periodic pattern

<e1e2
2
, 7:1, 0> are valid in a workload trace WL then a

periodic pattern <e1e2
2
, 1:3, 3> is valid in WL.

Rule 3 (Restriction) If a periodic pattern <C, f:t, p> is valid

in a workload WL then a periodic pattern <C, f ':t', p> such

that f ' =f+(n-1)*p for n = 1,…,t and t' such that f ' + (t'-1)*p

≤|U| is valid in WL. For example, if a periodic pattern <e1e2
2
,

2:4, 3 > is valid in WL then a periodic pattern <e1e2
2
, 5:2, 3 >

obtained through the elimination of the first and the last cycle

is valid in WL.

Rule 4 (Decomposition) If a periodic pattern <C, f:t, p> is

valid in a workload WL then a periodic pattern <C', f ':t, p>

such that a carrier C' is obtained from a carrier C by

elimination of any multiset from any element of a carrier C

and if there are any leading or trailing empty multisets in C'

elimination of all i leading empty multisets and all trailing

empty multisets from C' is valid in WL. For example, if a

periodic pattern <e1e2
2
, 2:5, 1> is valid in WL then a periodic

pattern <e2, 3:5, 1> obtained through the elimination e1 from

the first element and e2 from the second element of a carrier

e1e2
2
 is valid in WL.

Rule 5 (Composition) If the periodic patterns <Ci, fi:t, p >

and <Cj, fj:t, p> are valid in a workload WL and fi ≤ fj then a

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

226

In this work we consider a simplified version of periodicity

model used in [2]. A periodic pattern is defined as a triple <C,

f:t, p> where a carrier C is a nonempty sequence of at least

one nonempty multisets of events, a range f:t, is a pair of from

and total natural numbers, and periodicity p is a natural

number. Additionally the values of f:t and p satisfy the

conditions f ≥ 1 and t ≥ 1 and p ≥ 0 and f +(t -1) *p +|C| -1 ≤

|U | and if t =1 then p =0.

Let WL be a workload trace of a nested log L. We say, that a

periodic pattern <C, f:t, p> is valid in a workload histogram

WL recorded over time units U if TR(<C,f:t,p> ,|U|)[i]  WL[i]

for i=1,…,|U|, in the other words if every element of trace of

the pattern over |U| time units is included in the respective

element of a workload WL.

periodic pattern <Ck, fi:t, p > where Ck=tr(Ci, 1, fj - fi + |Cj|)

⊎1..p tr(Cj, fj - fi, fj - fi +|Cj|) is valid in WL. For example, if the

periodic patterns <e1e2
2
, 1:3, 4 > and periodic pattern <e1, 4:3,

4> are valid in a workload trace WL then a periodic pattern

<e1e2
2
Ø e1, 1:3, 4> is valid in WL.

Rule 6 (Grouping) If a periodic pattern <C, f:t, p > is valid

in a workload WL then for any n=1,...,t such that t mod n = 0 a

periodic pattern <C', f:t/n, p*n > such that a carrier C' =

TR(<C, f:t, p>,(n-1)*p+|C|)) is valid in WL. For example, if a

periodic pattern <e1e2
2
, 1:4, 3> is valid in WL then a periodic

pattern <e1e2
2
Ø e1e2

2
, 1:2, 6> is valid in WL.

Grouping and composition derivation rules can be used to

combine two periodic patterns with different carriers, ranges

and periodicity. As a simple example consider the periodic

patterns <e1e2
2
, 1:4, 3> and <e3, 3:6, 2>. To apply the

composition rule the parameters t and p must be the same. To

find a common p we find the least common multiplier of the

periods of the patterns, i.e. lcm(2,3) = 6. Then, we apply the

grouping rule to transform a pattern <e1e2
2
, 1:4, 3> into

<e1e2
2
Ø e1e2

2
, 1:2, 6> and pattern <e3, 3:6, 2> into

<e3Ø e3Ø e3, 3:2, 6>. Now, application of the composition rule

provides a periodic pattern <e1e2
2
e3e1(e2

2
,e3)Ø e3, 1:2, 6>.

VII. DISCOVERING PERIODIC PATTERNS

Let P be a set of periodic patterns and let R be a set of

derivation rules presented in the previous section. We denote

by P R P' a fact that a set of periodic patterns P' can be

derived by from a set of patterns P using a set of derivation

rules R presented in the previous section. We say that the sets

of periodic patterns Pi and Pj are equivalent if Pi T Pj and

Pj T Pi. Discovering the complex periodic patterns is

performed through application of the following sequence of

algorithms.

A. Algorithm 1

A periodic pattern <C, f:t, p > is called as an elementary

periodic pattern when C=e and p =1. The following

algorithm finds the elementary periodic patterns <e, f:t, 1> in

a workload trace WL for a given event e.

1) Make a multiset of elementary periodic patterns P(e)

empty.

2) Iterate over the elements of a workload trace WL from the

first to the last element. Set the first available element in

WL to 1.

 Append a periodic pattern <e, f:t, 1> to a multiset P(e).

 Modify the entries in a workload trace WL in the

following way:

WL[f]:=WL[f]-e, WL[f+1]:=WL[f+1]-e,...,WL[f+t-1]: =

WL[f+t-1]-e. Such modification is needed to eliminate an

impact of a periodic pattern <e, f:t, 1> on a workload trace WL.

Next, we set the first available element in WL to k=f +t and if

its greater than |WL| move to step (3), otherwise continue step

(2) from (2.1).

3) If at least one new pattern has been added in the latest

pass through WL then move to step (2), otherwise quit the

algorithm.

Algorithm 1 is repeated for all events in {e1,...,en} until no

new elementary patterns can be found. As the result, we

obtain the multisets of periodic patterns P(e1),...,P(en). In a

special case it is possible to consider an entire workload trace

WL as a carrier of a periodic pattern <WL, 1:1, 0>. Then,

Algorithm 1 is a simple application of the decomposition rule

to the pattern and later on the synthesis and extension rules to

create the patterns where p = 1.

B. Algorithm 2

The next algorithm applies a composition rule to the

elementary periodic patterns separately in each P(e1),...,P(en)

to create new patterns.

1) Find all pairs of periodic patterns <e
k

i, f:t, 1> and <e
k

j, f:t,

1> in P(e) and replace each pair with a periodic pattern

<e
k

i
+k

j, f:t, 1>.

2) Repeat step (1) until no new periodic patterns can be

created.

Algorithm 2 is repeated for all sets of periodic patterns

P(e1),...,P(en).

C. Algorithm 3

The next algorithm applies the synthesis rule to the periodic

patterns separately in each P(e1),...,P(en) obtained from the

previous step to create new patterns.

1) Find a sequence of at least two periodic patterns <e
k
, f1:t,

1>, ..., <e
k
, fn:t, 1> in P(e) such that fi+1-fi is the same for

i=1,..., n-1.

If a sequence cannot be found then quit the algorithm.

2) Apply the grouping rule to transform each pattern in the

sequence into <e
k
... e

k
, f1:1, 0>,...,<e

k
... e

k
, fn:1, 0>

where a multiset e
k
 in a carrier are repeated t times.

3) Apply the synthesis and extension rules to transform the

sequence into a periodic pattern <e
k
... e

k
, f1:t, fj-fi> and

replace the sequence with a derived pattern.

4) Repeat the steps (2) and (3) until no new periodic

patterns can be created.

Algorithm 3 is repeated for all sets of periodic patterns

P(e1),...,P(en).

D. Algorithm 4

Finally, the last algorithm applies the composition rule to all

periodic patterns from a multiset P(E)=P(e1) ⊎ … ⊎ P(en).

1) Find a pair of periodic patterns <Ci, fi:t, pi > and <Cj, fj:t,

pj > included in P(E) and fi ≤ fj and such that the patterns

overlap more than a given overlap threshold omax

determined as fj - fi ≤ omax.

Application of the restriction rule may be required to adjust

the total number of cycles in the patterns to a common value t.

The rule is applied only if one of the patterns returned is

shorter than a given percentage of the total number of cycles

of the original pattern, e.g. it consist of less than 20 percent of

the total number of cycles of the original pattern.

2) Apply the grouping rule to each element of the pair such

the derived patterns have a common value of parameter p,

i.e, <C'i, fi:t', p> and <C'j, fj:t', p>.

3) Apply the composition rule to the patterns <C'i, fi:t', p>

and <C'j, fj:t', p> to create a complex pattern <Ck, fi:t',

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

227

 Find the smallest index greater or equal to an index of the

first available element in WL such that e  WL[f] and

record in t the total number of adjacent elements in a

workload histogram such that each element includes e.

VIII. EXPERIMENT

The main objective of the experiments was to estimate the

quality of the proposed system of derivation rules and strategy

of their application as a sequence of algorithms transforming

the periodic patterns. As a measure of quality we used a ratio

of the total number of single cycle periodic patterns obtained

after all derivations to the total number of time units in a

workload trace.

As a sample nested log of events, we used a transformed

audit trail obtained from the monitoring of a synthetic

database load generator running against “of-the shelf'”

commercial relational database management system. An audit

trail is a sequence of SQL statements with associated

processing timestamps. The sequence becomes the topmost

level of a nested log. At the lower levels each SQL statement

is transformed with EXPLAIN PLAN statement into a syntax

tree of an extended relational algebra expression. The

operations of the expression form the events in a nested log.

At the lowest level in a nested log the operations of read/write

data block are associated with the timestamps obtained from

SQL trace of the statements included in an audit trail.

The database load generator created a sequence of

SELECT statements that access a sample TPC H benchmark

relational database. The stream was audited and audit trail

consisting of SELECT statements and respective timestamps

was saved. At period of time over which an audit trail was

collected was divided into a given number of adjacent time

units U and SELECT statements included in the audit were

assigned to the time units in U. In a perfect case there should

be no single cycle periodic patterns after all derivations. It

means that the algorithms implementing the derivations rules

and transformation strategies are able to attach every entry in

a workload trace to one of periodically performed actions.

To obtain an input data set consistent with a model of

nested log of events EXPLAIN PLAN statement was applied

to each SELECT statement included in the trail to get the

syntax trees of extended relational algebra expressions

implementing the statements together with information about

their timestamps. A root of each syntax tree represented the

topmost event, the nodes with the operations of extended

relational algebra represented the nested events, and the leaf

level nodes represented elementary events with empty logs.

The syntax trees were used to create event tree table and later

on reduced events tree table in a way described earlier in the

paper.

Application of synthetic workload generator allowed us to

generate the periodic processing of database tasks with the

earlier determined parameters such that the trace of periodic

processing could be easily compared with the results of

derivations. The main component of a single instance of the

generator was a process that iteratively submitted for

processing a given sequence of SELECT statements in a given

period of time. The process could be nested such practically

any periodic processing could be obtained in Unix

environment.

All software was implemented in SQL embedded in a host

language of the database management system used. The

software was parameterized in a number of dimensions. First,

a period of time over which an audit is performed could be

divided into a given number of disjoint and adjacent time

units with an earlier determined length of each time unit. A

synthetic workload can be easily reconfigured through

addition and/or removal of Unix shell scripts running

periodically processed SQL scripts. The minimal total

number of elements in the sequences of periodic patterns

processed by Algorithm 3 was parameterized to avoid the

derivations of periodic patterns with a low number of cycles

and long carriers. Finally, an overlap parameter that

determines the maximum distance between the first cycles of

the composed periodic pattern was enforced in

implementation of Algorithm 4 to eliminate the compositions

of periodic patterns whose first cycles are not close enough.

The experiments performed on the synthetically generated

workloads proved, that on average it is possible to reduce the

initial number of elementary periodic patterns obtained

directly from a workload trace to total 10% of the total

number of elementary patterns. The total number of

"leftovers", i.e. executions of syntax trees not assigned to any

pattern is not larger than 5% of the total size of workload trace.

Application of the composition rule allows for creation of

complex periodic patterns, however, frequent application of

compositions increases the length of a carrier and in the same

moment reduces the total number of cycles in the derived

patterns.

IX. SUMMARY AND FUTURE WORK

This works shows that it is possible to derive the complex

periodic patterns of events from information recorded in the

nested event logs and from elementary periodic patterns. A

formal model of nested logs of events aggregates information

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

228

p>.

4) Replace the original pair of patterns with a pattern

obtained in the previous step.

5) Repeat the steps above until no new periodic patterns can

be created.

The following simple example shows how the derivation

rules implemented with each algorithm above transform the

periodic patterns. We start from a workload trace

WL=e1
2
(e1,e2)e1

2
(e1,e2)e1.

Algorithm 1 transforms a pattern <WL, 1:1, 0 > into the

following six patterns p1=<e1, 1:5, 1 >, p2=<e1, 1:1, 0 >,

p3=<e1, 3:1, 0 >, p4=<e1, 5:1, 0 >, p5=<e2, 2:1, 0 >, and

p6=<e2, 4:1, 0 >.

Algorithm 2 does not transform any periodic patterns.

Algorithm 3 transforms the patterns p2,...,p6 into the

patterns p7 = <e1, 1:2, 2 > and p8 = <e2, 2:2, 2 >.

Algorithm 4 uses the composition rule to transform p7 and

p8 into p11 = <e1e2, 1:2, 2 >.

Then, it uses the restriction rule to transform a pattern p1

into the patterns p9 = <e1, 1:4, 1> and p10 = <e1, 5:1, 0>.

The grouping rule is used to transform p9 into p12 = <e1e1,

1:2, 2>.

Finally, the composition rule is used again to transform p11

and p12 into the result p13 =<e1
2
(e1,e2), 1:2, 2>.

At the end a set of patterns p10, p13 is equivalent to a

workload trace WL.

extracted from the application traces, event logs and dynamic

profiles. Then, a nested log of events is transformed into a

workload trace that binds the events with a predefined set of

time units. A system of derivation rules is used to create the

complex periodic patterns from the elementary ones in the

following way. First, a sequence of algorithms applies the

derivations rules to transform a workload trace into a

collection of elementary periodic patterns. Next, the

derivation rules are used to transform the elementary periodic

patterns into the complex periodic patterns. An experiment

that processes information included in the database audit

trails is verifies the concept and it estimates the quality of

discovery process implemented as a sequence of derivations.

The approach presented in the paper tries to reduce the

complexity of search for periodic patterns through discovery

of single event patterns and later on creation of more

sophisticated patterns through application of derivation rules.

The important aspects of such approach are logical

correctness and completeness of a given system of derivation

rules. Correctness of the derivation rules can be easily proved

directly from a definition of validity of periodic pattern in a

workload trace. We argue that the system of rules is complete

for an interpretation of periodic pattern described in the paper

because if a workload trace contains a pre-specified periodic

pattern then decomposition of workload trace into elementary

patterns and later on application of the rules always restores

the original pattern.

A formal model of periodic patterns considered in the

paper assumes that all cycles of a pattern are always processed

with the same periodicity and none of them fails. In the reality,

it may happen that a cycle is not processed due to some

random reasons or it is delayed such that it happens in one of

the following time units. An interesting research objective is a

set of rules that can further enhance the periodic patterns

obtained from the algorithms described in the paper, for

example the rules which can be used to derive complex and

imperfect periodic patterns. Such system of derivation rules

should be able to detect the cases when some cycles are

missing or delayed to another time unit.

Another interesting extension is the best choice of time

units over the workload traces. At the moment, a completely

arbitrarily selection of time units may result with either too

fine or to coarse granulation of time and in a consequence it

may distort the periodic patterns. Too long time units may

result with the continuous periodic patterns where every

element of workload histogram is included in a pattern. Too

short time units may provide periodic patterns with low level

of quality indicators such as regularity and density. A

mechanism is needed to find the most appropriate granulation

of time for the parameters of a given event log.

REFERENCES

[1] N. Bruno, Automated Physical Database Design and Tuning, CRC

Press Taylor and Francis Group, 2011.

[2] J. Getta, M. Zimniak, and W. Benn, “Mining periodic patterns from

nested event logs,” in Proc. the 14th IEEE International Conference

on Computer and Information Technology, CIT 2014, 2014, pp.

160–167.

[3] H. Agrawal and J. Horgan, “Dynamic program slicing,” presented at

the SIGPLAN Conference on Programming Language Design and

Implementation, 1990.

[4] T. Ball and J. R. Larus, “Efficient path profiling,” presented at the

IEEE/ACM International Symposium on Microarchitecture, 1996.

[5] G. Ammons and J. R. Larus, “Improving data flow analysis with path

profiles,” presented at the SIGPLAN Conference on Programming

Language Design and Implementation, 1998.

[6] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing

algorithms,” presented at the IEEE/ACM International Conference on

Software Engineering, 2003.

[7] X. Zhang and R. Gupta, “Matching execution histories of program

version,” presented at the Joint 10th European Software Engineering

Conference and 13th SIGSOFT Symposium on the Foundations of

Software Engineering, 2005.

[8] ACM Trans. Archit. Code Optim., vol. 2, no. 3, pp. 301–334, 2005.

[9] E. Siever, A. Weber, S. Figgins, R. Love, and A. Robbins, Linux in a

Nutshell, O’Reilly, 2005.

[10] B. Ozden, S. Ramaswamy, and A. Silberschatz, “Cyclic association

rules,” in Proc. the Fourteenth International Conference on Data

Engineering, 1998, pp. 412–421.

[11] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent

episodes in event sequences,” Data Mining and Knowledge Discovery,

vol. 1, pp. 259–289, 1997.

[12] M. Wojciechowski, “Discovering frequent episodes in sequences of

complex events,” in Proc. Enlarged Fourth East-European

Conference on Advances in Databases and Information Systems

(ADBIS-DASFAA), 2000, pp. 205–214.

[13] F. Rasheeed, M. Alshalalfa, and R. Alhajj, “Efficient periodicity

mining in time series databases using suffix trees,” IEEE Transactions

on Knowledge and Data Engineering, vol. 23, no. 1, pp. 79–94, 2011.

[14] K.-Y. Huang and C.-H. Chang, “SMCA: A general model for mining

asynchronous periodic patterns in temporal databases.”

[15] J. Yang, W. Wang, and P. S. Yu, “Mining asynchronous periodic

patterns in time series data,” IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 3, pp. 613–628, Mar. 2003.

[16] J.-S. Yeh, S.-C. Lin, and S.-C. Hu, “Novel algorithms for asynchronous

periodic pattern mining based on 2-d linked list,” International

Journal of Database Theory and Application, vol. 5, no. 4, pp. 33–43,

2012.

[17] S. Laxman and P. S. Sastry, “A survey of temporal data mining,”

Sadhana, Academy Proceedings in Engineering Sciences, vol. 31, no.

2, pp. 173–198, 2006.

[18] J. F. Roddick and M. Spiliopoulou, “A survey of temporal knowledge

discovery paradigms and methods,” IEEE Transactions on Knowledge

and Data Engineering, vol. 14, pp. 750–767, 2002.

[19] M. Zimniak, J. Getta, and W. Benn, “Deriving composite periodic

patterns from database audit trails,” in Proc. the 6th Asian Conference

on Intelligent Information and Database Systems, 2014, pp. 310–321.

[20] D. A. Simovici and C. Djeraba, Mathematical Tools for Data Mining:

Set Theory, Partial Orders, Combinatorics, Springer, 2008.

Janusz R. Getta received the BSc and MSc degrees in computer science in

1977 from the University of Technology, Warsaw, Poland. He received the

PhD degree in computer science in 1983 from the University of Technology,

Warsaw. From 1980 to 1986, he was employed as a researcher at the Institute

for Scientific, Technical, and Economic Information in Warsaw. From 1986

to 1990 he worked as an associate professor at the University of Kuwait. In

1991 he joined the Department of Computer Science at the University of

Wollongong, Wollongong, Australia. He has been working in the field of

database for many years. His recent research interests include database

performance tuning, data integration, data stream processing, physical

database design, and data mining in relational databases.

Marcin Zimniak received his MSc in mathametics from Faculty of

Mathematics and Computer Science, Nicolaus Copernicus University,

Toruń, Poland in 2001. Currently he is working with the Faculty of

Computer Science, TU Chemnitz, Chemnitz, Germany where he is

completing his PhD. His relevant research interests include periodic patterns

theory, discovering of periodic patterns, efficient data mining algorithm.

International Journal of Knowledge Engineering, Vol. 1, No. 3, December 2015

229

