
  

  

Abstract—Calculating semantic similarity between sentences 

is a difficult task for computers due to the complex structure 

and syntax of a sentence. Typically, in order to represent a 

sentence, there are numerous significant characteristics which 

need to be alternatively considered, for example, ambiguity, 

words’ order, the context of sentences, etc. Various methods 

have been proposed to construct a language model for 

computing the similarity, such as average words embedding or 

sentence embedding based on auto-encoder architecture. 

However, these methods usually focus on the sentence and skip 

the influence of the previous sentences. In the paper, we 

introduce a novel approach to transform from sentences with 

context to embedding vectors based on auto-encoder 

architecture. Experiment results showed that the proposed 

method could find a better result for estimating similarity 

sentences in a certain scenario. 

 
Index Terms—Semantic similarity, word embedding, 

sentence embedding, language model, auto-encoder.  

 

I. INTRODUCTION 

Estimating the semantic similarity is a difficult task in 

natural language processing. Unlike humans, it not easy for a 

machine to recognize the same meaning between similarity 

sentences because the structure and syntax of a sentence in 

human language are too complex. To completely get the 

intention of a sentence, a language model is required to cover 

the meaning of words, the arrangement of these words, and 

the context of this sentence. For instance, sentences with 

different words usually do not have the same meaning, and 

even the ones with same words might not either. For example, 

the sentence “Peter hit Tom” and “Tom hit Peter” share the 

same words, but the meanings of the two sentences are 

different. Moreover, the meaning of a sentence is also 

affected by the context of its conversation. For instance, if a 

question in the conversation is: “Are you hungry?”, the 

answer could be: “Yes, I am hungry” which is an indication 

about the condition of the speaker. On the other hand, if the 

conversation has a question such as “Do you want something 

to eat?”, the purpose of the answer: “Yes, I am hungry” can 

be considered as a confirmation that he needs food, same as 

the answer: “Yes, I want something to eat.”. A language 

model is often constructed to help a machine solve the 

complicated problem mentioned above. There are two main 

research directions: word embedding and sentence 

embedding which aim to determine the representation of 

sentences.  

In the former direction, the success of various word 
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embedding models were developed in the past years such as 

Word2vec [1], Glove [2], FastText [3] and more recently 

ELMO [4], the approaches in this direction assume that the 

representation of sentence is simply calculated by the average 

of words embedding. With a word embedding model, a 

baseline method is computing the Bag-of-words (BoW) of 

word vectors to get sentence representation but does not 

really have an effective result because BoW rarely ponders 

the weight of words in the sentence. Consequently, some 

recent methods, especially smooth-inverse-frequency (SIF) 

[5], demonstrated the importance of using weighted average 

and modify them using singular-value decomposition (SVD). 

However, ignoring the ordering of words in a sentence is still 

a disadvantage of the methods in this direction. As an 

example, although “Tom hit Peter” and “Peter hit Tom” 

consist the same words, the meanings of them are different.  

In the latter direction, sentence embedding models based 

on auto-encoder architecture were developed and has 

demonstrated that it can address the words ordering. To solve 

the problem, the methods in this direction usually encode full 

sentence to the vector by putting words consecutively to a 

neural network. In this direction, there are two types of 

approaches such as supervised and unsupervised 

learning-based method. Firstly, the method based on a 

supervised training task like InferSent [6] or Universal 

Sentence Encoder (USE) [7] use the Stanford Natural 

Language Inference (SNLI) labeled dataset to predict 

entailment/contradiction. By using the same encoder for two 

sentences with the gold score which is the semantic similarity 

value manually defined by humans, these above methods 

have received an impressing result. Nonetheless, the 

drawback is that these methods must require high quality 

dataset. Secondly, Skip Thought Vector [8], [9] or Quick 

Thought [10] – the unsupervised training-based methods are 

proposed with the idea using encoder-decoder models for the 

sentence, and the surrounding sentences of the given sentence. 

In this approach, the drawback of high quality dataset cost is 

solved because those applied on the unstructured dialogues.  

In our best knowledge, all prior researches are performing 

passable representation of sentences but missing an important 

point about context. In fact, context plays an important role in 

the represented sentence, and the meaning of a sentence can 

only be fully understood within the context. Thus, we 

propose a model with two encoders for the previous 

sentences and the current sentence, a decoder to express the 

next sentence. By cover the influence of previous sentences, 

our model outperformed the previous studies in the 

unsupervised approach. 

The remainder of this paper is organized as follows. In 

Section II, we review the approaches based on word 

embedding and sentence embedding. Next, the proposed 
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Context based Sentence Embedding (CSE) model is defined 

formally in Section III. Section IV describes an experiment of 

the proposed model to numerous datasets of similar sentences. 

Experimental results are discussed in Section V. Finally, 

open issues and potential future work are discussed in Section 

VI. 

 

II. RELATED WORK 

A model language is essential, playing an integral role in 

numerous applications in natural language processing. As the 

heart of the application, a model language usually helps the 

machine understand and carry out the requirement of human.  

Specifically, for solving the different languages between 

human and machine, this model is an intermediary to 

transforms human language into the information 

understandable for machine and vice versa. In the last decade, 

with the advent of strong calculating devices, there are many 

proposed methods [1]-[10], which exist and has acquired 

impressive achievements. These methods often represent 

words, sentences based on the embedding vector to capture 

their semantic and syntax. Therefore, by computation of the 

combination of vector, machines can find out a representation 

of the requirement of humans.  

One of the first popular approaches in word embedding is 

Word2vec [1] which aims to compute the semantic 

relationship adjacent words within a sentence. This approach 

relied on either Continuous Bag of Words (CBOW) 

architecture which uses the bag-of-words context to predict a 

target word or Skip-gram architecture which predicts the 

context word based on given a target word. Another approach 

similar to Word2vec is Glove [2], which also uses a context 

window to simulate word representation. The difference 

between them is the way of using the context of words. While 

Word2vec use context window to make a training set for 

neural network, Glove utilizes it to create a co-occurrence 

matrix. In term of this aspect, Glove might be more 

comprehensive than Word2vec because it computes based on 

all dataset, instead of only the context word in Word2vec. 

However, both models have the drawback in out of 

vocabulary problem. 

This is one reason why FastText [3] is introduced by 

Facebook. They suggested a method which divided words 

into n-gram and training based on these tokens. For instance, 

the word “apple” will transform to “app”, “ppl” and “ple”. 

Thus, this model works well for the rare words and solves the 

about out of vocabulary problem. 

Although word embedding operates well in some tasks, it 

still has a few issues when performs sentences. Hence, 

another research direction was proposed using sentence 

embedding to learn language representation. Based on 

auto-encoder architecture, some models attempt to represent 

sentence by supervised or unsupervised learning. A major 

advantage of this research direction is keeping the order of 

word in the sentence.  

First of all, Skip-Thought Vector [8] model includes a 

Recurrent Neural Network (RNN) to map words to sentence 

vector in the encoder and two RNNs generate the surrounding 

sentences (previous and next sentence) in the decoder. A 

major advantage of Skip-Thought and other models in 

sentence embedding approach compared to word embedding 

is the order of word in the sentence.  

After Skip-Thought, InferSent – a recent approach in 

sentence embedding has been introduced by Facebook [6] 

with the same ideology about the representation of sentences. 

The large difference between the two approaches is that 

InferSent was a supervised learning approach, instead of 

unsupervised learning as Skip-Thought. They applied a 

BiLSTM model to a labeled dataset to predict 

entailment/contradiction. This approach proves its efficiency 

with much better results on various tasks than other methods. 

However, a disadvantage of this approach is the requirement 

of the high-quality labeled dataset for training. The author 

used SNLI dataset which includes 570k pair of sentences in 

English to build the semantic sentence.  

Finally, the latest proposal approach recently is Universal 

Sentence Encoder (USE) [7] which was provided by Google. 

Like InferSent, this approach also trains on the SNLI dataset 

but integrated with the unsupervised learning tasks in two 

different encoders for making sentence representation. The 

first one is the Transformer-based encoder model which 

required a high computational resource and got a better 

accuracy. In which, Transformer [11] is a novel architecture 

which uses only attention mechanism, instead of a Recurrent 

neural network. The second one is Deep averaging network 

(DAN) which utilizes a mechanism where words and n-gram 

are averaged as the input in a deep neural network.  

Although the above approaches highly successfully 

performed the representation of sentences, there is a major 

issue in these models. It is a missing of the influence of 

context on the sentence. For example, machines cannot select 

the meaning between two sentences in Table I if missing the 

helpful information of the previous sentence. Therefore, we 

propose a novel approach which covers the sentence and its 

context for the best performing sentence. 

 
TABLE I: THE INFLUENCE OF THE PREVIOUS SENTENCE TO THE CURRENT 

SENTENCE 

 
Previous 

sentence 

Current 

Sentence 
Meaning 

Example 

I have just 

bought a new 

telescope. 

I saw a man in 

the building 
with a telescope. 

There was a man in 

the building, and I 

saw him with my 

telescope. 

I came to my 

office. 

I saw a man in 

the building 

with a telescope. 

There was a man in 

the building, who I 

saw and he had a 

telescope. 

 

III. APPROACH 

Fig. 1 depicts the architecture of the proposed model. 

Based on Encoder-Decoder architecture, our model aims to 

construct the context vector which is a representation of the 

input sentences. Then, the next sentence will be generated 

using this context vector. 

As we mentioned it in Section II, our model considers both 

the current sentence and the previous sentences as the input to 

obtain the context vector before insert to the decoder for 

generating the next sentence. The proposed model is divided 

into three parts: encoder, context vector extraction and 

decoder. Firstly, our model utilizes a Gate recurrent unit 

(GRU) neural network [12] as the encoder to encode the 
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sentences. Throughout GRU, the next word is predicted by 

the previous words in the sentence. The last hidden state of 

GRU will be considered as a representation of the input 

sentence. Furthermore, according to the difference of the 

effect contributed by the sentences on the next sentence, the 

current sentence and the past sentences are encoded by two 

different GRUs. While the meaning of the current sentence is 

performed to the hidden state by a GRU, another GRU 

extracts the additional information from the previous 

sentences to other hidden states for increasing the quality of 

the representation. In the second part, our model uses the 

attention mechanism to construct a context vector which 

represented the meaning of input sentence with its context. 

Specifically, these hidden states are computed by attention 

mechanism to get the weight of the input sentences. The 

average value of weights and hidden states are used to make a 

context vector. In the last part, the context vector is inserted 

to eventually generate the next sentence under the operation 

of the decoder. After the training phrase, the context vector 

can be considered as a representation of the sentence.  

More specifically, assume that we have given a list of 

sentences (Si-k … Si, Si+1) where k is the number of 

previous sentences. Let 𝑊𝑖
𝑡 denote the tth word for sentence 

Si and 𝑋𝑖
𝑡 denote for its word embedding. The operation of 

CSE model will be expressed in three parts: encoder, context 

extraction and decoder. 

 

 
Fig. 1. Context based sentence embedding model. 

A. Encoder 

In the encoder step, we separate the current sentence and 

the previous sentences. Then, the numerous of preceding 

sentences are encoded by a GRU1. At the same time, GRU2 

will transform the current sentence to the hidden states. 

Regarding the parameter, both GRUs share the same 

vocabulary matrix V, but have separate parameters. More 

specifically, given a sentence, words 𝑊𝑖
1…  𝑊𝑖

𝑁 in sentence 

ith will be encoded to the N hidden state by GRU and the last 

step of the encoding produce ℎ𝑖
𝑁 is considered as the 

representation of sentences. This produce can be illustrator 

such as follow: 

 

( )1 .t t t

r rr W x U h −= +                (1) 

 

( )1 .t t t

z zz W x U h −= +               (2) 

 

( )( )1tanh .
t t t th Wx U r h −= +            (3) 

 

( ) 11 .
tt t th z h z h−= − +            (4) 

 

where W and U are the weight matrix, 𝑥𝑡 is word at 𝑡𝑡ℎ in 

sentence, ℎ𝑡 is the hidden state of the word 𝑥𝑡, 𝑟𝑡 is the reset 

gate, 𝑧𝑡  is the update gate, (⨀) denotes a component-wise 

product and ℎ̅𝑡  is the proposed state update at time t. All 

update gates take values between zero and one. 

B. Context Extraction 

In this step, the given last hidden states ℎ𝑖
𝑁 from encoder 

step are used to get the context vector. With the definition of 

the last hidden state which is considered as a representation, 

the attention mechanism is applied to help the model focusing 

on the important information.  

More specifically, after encoding the input sentences, ℎ𝑖
𝑁 

will represent the first sentence in the dialogue and ℎ𝑇
𝑁 is the 

hidden state of the current sentence where N is the max length 

of sentence in the dataset, T is the sum of the number of 

previous sentences and the current sentence. Using 

Bahdanau’s attention mechanism, the weight of hidden states 

will be calculated as follows: 

 

( ),N N

j T jalign h h =                                  (5) 

                ( )tanh .N Nh hjT

T

a
a a

v W U= +    

 

From (5), the context vector is expressed such as the 

following: 

 

1
.

T N

i ii
c h

=
=                                    (6) 

 

where c is the context vector, 𝛼𝑖 is the weight of the sentence 

𝑖𝑡ℎ. 

C. Decoder 

At the last step, the operation in decoder is the same as in 

encoder, except only the first input. To generate the next 

sentence, instead of token <start>, the context vector is firstly 

inserted to the decoder. Then, the hidden state of words in the 

next sentence ℎ𝑖+1
𝑡 can be computed as follow: 

 

( )1 .t d t d t

r rr W x U h −= +                              (7) 

 

( )1 .t d t d t

z zz W x U h −= +                             (8) 

 

( )( )1tanh .
t d t t th W x U r h −= +                (9) 

 

( ) 1

1 1 .
tt t t t

ih z h z h−

+ = − +                    (10) 

 

where 𝑊𝑟
𝑑 , 𝑈𝑟

𝑑 , 𝑊𝑧
𝑑 , 𝑈𝑧

𝑑  are weight matrix of GRU in 

decoder. Hence, given t-1 previous words and the context 

vector of encoder, we can recognize the word 𝑡𝑡ℎ in the next 

sentence. 

 

IV. EXPERIMENT 

Our experiment is divided into two parts: training and 

evaluation on the CSE model. In the training part, 
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Skip-Thought and our model were applied to the DailyDialog 

which was recently a popular dataset included 13118 daily 

conversations.  

For comparison between Skip-Thought and our model, we 

utilized the same setting in training with the mini batch size 

64, the embedding vector is 512 and learning rate is 5e-4 with 

the Adam optimization algorithm in 1000000 steps to predict 

the next sentence. The loss was computed by the comparison 

between the prediction and the target sentence. 

Besides, to evaluate the influence of the previous sentences, 

we implemented two instances of our model, CSE1 is a 

model using one previous sentence and CSE2 is a model 

using two previous sentences. 

After the training part, we evaluate Skip-Thought and our 

model on 1379 pairs of sentences of the STS benchmark data 

and the SICK dataset with 10000 records following the idea 

proposed by Tai et al [13] such as shown in Fig. 2 instead of 

calculating based on cosine similarity. Compared to cosine 

similarity, this method allows the weights to be learned while 

cosine similarity applies the same weight for all features. The 

procedure of this method is carried out as follows. Firstly, a 

given sentence pair will be encoded to the representation 

vector u and v. Then, we extract the relation between these 

two sentences. In order to do that, the concatenation of the 

component-wise product u v and the absolute difference      |u 

− v| are regarded as the features for the given sentence pair. 

Finally, we train a logistic regression to predict a semantic 

relatedness for the given sentence pair. 

For comparison, we evaluate two models each 50000 steps 

by Pearson and Spearman correlation which is the measure to 

estimate the quality of sentence embedding. 

 

 
Fig. 2. The operation of calculating semantic relatedness. 

 

V. RESULTS AND DISCUSSION 

The primary contribution of the proposed model is to find 

the influence of previous sentences to the meaning of the 

current sentence. This influence is equivalent to the context 

of the current sentence which reinforces the clarity of its 

meaning. This is an important task to separate the sentences 

having identical wording but different meaning. Hence, the 

representation of sentences is considerably more accurate. 

 
TABLE II: THE BEST PEARSON AND SPEARMAN CORRELATIONS IN 20 

CHECKPOINTS 

Channels Skip-Thought  
CSE-1 previous 

sentence 

CSE-2 previous 

sentence 

SICK 

Pearson 
61,66 %  65,5 % 65,8 % 

SICK 

Spearman 
55,09 % 58,88 % 58,67 % 

STS 

Pearson 
42,19 % 48,98 % 52,01 % 

STS 

Spearman 
41,07 % 48,59 % 51,74 % 

 

In our experiment, our model was shown that it 

outperformed Skip-Thought model. Fig. 3 shows that the loss 

of both models was almost convergence. However, while the 

prediction of the proposed model was approximated to the 

target sentence (the loss computed by the predicted and the 

target sentence was 0,33), the prediction of Skip-Thought 

model still need more time to get the best result. In addition, 

according to the semantic relatedness task, the results in 

Table II indicated that the proposed model also is better. All 

values of Pearson and Spearman correlation coefficient of 

our model were higher, especially the difference between the 

two models in the STSBenchmark dataset is approximate 

10%. Besides, Fig. 4 shows that the worse result in the 

proposed model also is even better than the best result of 

Skip-Though.  

 

 
Fig. 3. Comparison loss of CSE model and skip-thought. 

 

 
Fig. 4. Comparison of evaluation of CSE and skip-thought. 
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Regarding the training process, Fig. 4 also indicates that 

the early stop can be applied after 100000 steps because the 

proportion between the highest and the lowest is not too 

different. In addition, Table II shows that those models 

include more information from history which often perform 

better. With more information, CSE2 achieved three 

favorable results except for the Spearman correlation on 

SICK dataset where CSE1 achieved a better result (58,88%).  

As observed from Fig. 4, with a large dataset like SICK 

dataset, the variety in the results of our proposed model’s two 

instances are not significantly different. However, with a 

small dataset such as STS, the model CSE2 is moderately 

better than CSE1. This can be understood that the model with 

more information will be stable. 

Although the proposed model demonstrated the efficiency 

of embedding sentence based on context, the result still needs 

to be improved. As presented in [8], Skip-Thought could 

achieve a Pearson correlation 86,6% and Spearman 

correlation 80,83% on the SICK dataset which higher than 

our result. However, their experiment was applied on a much 

higher configuration: a bigger training dataset with 74 

million sentences, embedding vector 2400 dimensions, and 

takes a much larger training time. At this moment, because of 

the limitation of equipment and time, we cannot make an 

experiment with a large training dataset. Consequently, the 

proposed model need to verify with a large training dataset.  

 

VI. CONCLUSION 

In this paper, we introduced a new approach to perform the 

representation of sentences. To do this, the proposed model 

simulated the dialogue with two GRU for the current 

sentence and previous sentences in an encoder, one GRU in a 

decoder to predict the next sentence. Then, the evaluation of 

the quality of sentence embedding is processed on the SICK 

and STSBenchmark datasets. The experiment result shows 

that CSE model can transform a sentence to a good sentence 

embedding to calculate the semantic similarity.  

However, the used dataset for training is too small so there 

are some obstacles in transforming sentences to embedding. 

In the future, we will apply the proposed model to a large 

dataset and evaluate model again. 
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