

Abstract—This paper presents a potential solution to the

problem of extracting relevant sentences from past court

decisions, which is an important first step of our legal deep

learning research project. Court decisions are typically written

in natural language like English. Hence, our extraction solution

first uses legal statutes to construct an ontology for the desired

sentences, and then uses NLTK (Natural Language Toolkit), a

Python Natural Language Processing Toolkit, to construct

search patterns based on the ontology to extract relevant

passages from hundreds or thousands of past court decisions.

The extracted sentences will be further processed and the

resulting information will then be fed into a deep learning

system, whose purpose is to assist legal practitioners by selecting

relevant documents and streamline litigation.

Index Terms—Legal deep learning research project, ontology,

nltk (natural language processing toolkit), tokens, stemmer,

semantic similarity, wordnet.

I. INTRODUCTION

The ultimate goal of our legal deep learning research

project currently undertaken at The University of Alabama in

Huntsville is to develop an automated support system that

assists legal practitioners in selecting relevant documents and

streamlines litigation. In addition to developing traditional

decision trees, which have been used successfully in many

other data mining applications, this research project also

constructs a deep learning system that analyses hundreds, if

not thousands, of past court decisions that are similar to the

law suit at hand. Looking for similar precedents is a common

first step taken by most legal practitioners when faced with a

new case; doing so allows practitioners to better predict the

outcome of a new case and allows them to hone in on relevant

documents from among hundreds or thousands of others to

build their case. Automating such an analysis of past court

decisions by computers can certainly help increase search

space and reduce search time.

Although such a proposed system holds great promise,

many obstacles need to be first overcome for it to become a

reality. This paper presents a potential solution for an

important first step of this system: extracting relevant

passages from past court decisions. Past court decisions are

typically written in natural language like English. Hence, a

Manuscript received February 10, 2018; revised May 5, 2018.

Wai Yin Mok is with Department of Information Systems, The University

of Alabama in Huntsville, Huntsville, Alabama, 35899, USA (e-mail:

mokw@uah.edu).

Jonathan R. Mok was with School of Law, The University of Alabama

Houston, Tuscaloosa, AL 35487, USA (e-mail: Jon.mok@law.ua.edu).

software component that is able to process written texts and

extract the relevant information thereof is an essential element.

In recent years, natural language processing has come a long

way. It is common nowadays to see automated systems

responding fairly well to humans. In addition, to some degree

of success, major search engines are also able to understand

search items entered in free texts by humans. Based on years

of linguistic and AI researches, mature natural language

processing toolkits are also available. A notable example is

NLTK (Natural Language Toolkit), which can be

downloaded for free at http://www.nltk.org/ [1], [8].

Besides NLTK, a second essential step for our extraction

solution is to develop an ontology of the desired information.

An ontology is a conceptual model of the targeted information,

which specifies the structure and the attributes thereof. The

ontology can then be used to form a search template.

Ontological search has been successfully applied in many

areas, including family history and biology [2]-[7]. Based on

the ontology, search patterns are created, which will be

applied in the search written in Python code using the NLTK

module.

This paper is organized as follows. We first demonstrate

the ontology used in this paper. We then show the search

patterns derived from the ontology. After which, conclusions

will be presented.

II. CREATING AN ONTOLOGY

This paper uses a breach of contract court decision as an

example. Breach of contract can happen in many ways, and

nonconforming goods is a type of breach of contract.

Furthermore, court decisions on nonconforming goods look

to statutory laws that govern how such goods are treated. The

example used in this paper is based on the statute Code of

Alabama Section 7-2-601, which provides buyer’s rights

regarding nonconforming goods. Fig. 1 shows an ontology

created from that statute. A rectangle in the figure represents

the elements belonging to the set whose name is written inside

of the rectangle. For example, the rectangle “breach of

contract” represents a set of court decisions involving breach

of contract. An open triangle denotes a is-a relationship.

Hence, a court decision on buyer’s rights regarding

nonconforming goods is also a breach of contract court

decision and also looks towards Alabama statutory law. The

rectangle with the name Code of Ala. § 7-2-601 represents the

set of court decisions that look towards this section.

Furthermore a § 7-2-601 court decision has many components:

one or more plaintiffs, one or more defendants, and one or

more contracts, which are also shown in Fig. 1. Each contract

Extracting Relevant Sentences from Past Court Decisions:

An Important First Step of A Legal Deep Learning

Research Project

Wai Yin Mok and Jonathan R. Mok

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

17doi: 10.18178/ijke.2018.4.1.094

is further related to one or more disputes and each dispute is

associated with one or more facts and one or more reasonings,

which are explanations of how the court applies the law to the

facts.

Although each set of elements in Fig. 1 represents a legal

concept, each set is nevertheless associated with one or more

legal keywords in a court decision. For example, the set of

contracts is associated with the keyword “contract.” The

keywords associated with each set of elements will be used to

extract the desired sentences from the court decision.

Fig. 1. An ontology created from code of Ala. S 7-2-601, which specifies the

structure and the attributes of the targeted information.

III. ONTOLOGICAL SEARCH

A. NLTK (Natural Language Toolkit)

This section presents the basic steps that we took in using

NLTK, a popular natural language processing toolkit, for this

paper

import nltk

raw = open('case.txt','r').read()

caseTokens = nltk.word_tokenize(raw)

caseTagged = nltk.pos_tag(caseTokens)

stemmer = nltk.PorterStemmer()

caseStemmed = list(map(stemmer.stem,caseTokens))

Fig. 2. The basic NLTK setup steps of this paper.

The case file was first opened and then a list of tokens

called caseTokens was generated. Each token was further

tagged with its type, which was stored in the list called

caseTagged. Some examples are ('Opinion', 'NN'), ('by', 'IN'),

(':', ':'), ('SHORES', 'NNP'), where 'Opinion' is a NN (noun),

'by' is an IN (preposition), ':' is a colon, and 'SHORES' is a

NNP (proper noun). The stemmer reduces each token to its

stem (root) before the keywords are searched in the case file.

For example, 'Contract', 'contract', 'contracts' are all reduced

to 'contract'. Reducing each token to its stem increases the

number of matches in the case file.

B. An Example Court Decision

The particular breach of contract court decision used in this

paper is Gulf Coast Fabricators, Inc. v. Mosley, 439 So. 2d 36

(Ala. 1983), written by the Supreme Court of Alabama on

September 23, 1983. We obtained this court decision through

LexisNexis®, which added its own annotations. Hence, our

first step was to remove the annotations of LexisNexis®. The

actual court opinion starts with the keyword “opinion.” Hence,

our next step was to locate the token 'opinion' in the list

caseTokens.

def find(aSList,aBList,start=0):

 pos = []

 stemmed = list(map(stemmer.stem,aSList))

 for i in range(start,len(aBList)-

 len(aSList)):

 if stemmed ==

 caseStemmed[i:i+len(aSList)]:

 pos.append(i)

 return pos

opinionPos =

find(nltk.word_tokenize('opinion'),caseTokens)
Fig. 3. The function find, whose purpose is to locate a token within the list

caseTokens.

The function find is used to locate a particular token in a

given list. The result of the function call is that the token

'opinion' is at the index 792 in the list caseTokens. This means

that all searches will be done on or after index 792.

C. Semantic Similarity

Although each set of elements in the ontology of Fig. 1 is

associated with one or more keywords, it is possible that there

might be other words in the example court decision that have

similar meanings but are not explicitly specified. Hence, we

must first discover them in the case file. For this paper we

used the following code snippet to locate words that are

similar to “contract”. The method similar provided by

nltk.Text finds other words that appear in the same contexts as

the specified word. The resulting words found by the method

similar are shown in Fig. 5.

caseText = nltk.Text(caseTokens)

print(caseText)

caseText.similar('contract')

Fig. 4. Finding similar words to “contract” by the method similar, which is

based on distributional similarity.

building record fact gives slab case on tender buyer

findings gcf agreement size labor storing sale whether

Fig. 5. The resulting similar words to “contract” in the example case file.

Some words in Fig. 5 are clearly not similar to “contract.”

Nevertheless, NLTK has a corpus reader called “WordNet”

(http://www.nltk.org/howto/wordnet.html), whose interface

contains a method called “wup_similarity” that can be used to

compute the similarity of two words. As an example, the

words “contract” and “agreement” were compared in the

following snippet and the results are shown in Fig. 7.

from nltk.corpus import wordnet as wn

contractSynsets = [ss for ss in

 wn.synsets('contract','n')]

print(contractSynsets)

agreementSynsets = [ss for ss in

wn.synsets('agreement','n')]

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

18

print(agreementSynsets)

pairs = [(c.wup_similarity(a),c,a) for c in

 contractSynsets for a in agreementSynsets]

match = max(pairs)

print(match[0],match[1],match[2])

print(match[0],match[1].lemma_names(),match[2].l

emma_names())

Fig. 6. Checking similarity of the words “contract” and “agreement.”

 [Synset('contract.n.01'),

Synset('contract.n.02'), Synset('contract.n.03')]

[Synset('agreement.n.01'),

Synset('agreement.n.02'), Synset('agreement.n.03'),

Synset('agreement.n.04'), Synset('agreement.n.05'),

Synset('agreement.n.06')]

0.8571428571428571 Synset('contract.n.01')

Synset('agreement.n.01')

0.8571428571428571 ['contract'] ['agreement',

'understanding']

Fig. 7. The results of checking the meanings of the words “contract” and

“agreement.”.

Considering them as nouns, WordNet specifies that

“contract” and “agreement” respectively have three and six

different meanings. However, Synset('contract.n.01') and

Synset('agreement.n.01'), the most common meanings of

“contract” and “agreement,” have the greatest score 0.8571

of similarity. Because of such a high score, the word

“agreement” was added to the keywords associated with the

set “contract” in Fig. 1. In addition, since the word “agree” is

the verb form of “agreement,” the word “agree’ was also

added as well. The other sets of elements of the ontology in

Fig. 1 also went through this same process of identifying

additional keywords.

D. Finding Relevant Sentences

After determining the keywords for each set of elements in

the ontology in Fig. 1, the function find was used to locate the

appearances of each keyword in the case file. Note that the

function find first reduces each word to its stem before

equality comparison is made, thus maximizing the number of

matches. Using the keywords “contract, “agreement” and

“agree” as an example, the following code snippets were

generated.

keyWords = ['contract','agreement','agree']

keyWordTokens =

list(map(nltk.word_tokenize,keyWords))

keyWordPos = [(w,find(w,caseTokens,opinionPos[0]))

for w in keyWordTokens if

 find(w,caseTokens,opinionPos[0]) !=

[]]

keyWordPos = sorted(keyWordPos,key=lambda x: x[1])

allPositions = sorted([pos for w in keyWordPos for

pos in w[1]])

Fig. 8. Searching the keywords “contract,” “agreement,” and “agree” in the

example case file.

The list keyWordPos contains the indexes of the keywords,

which are shown as follows:

[(['contract'], [836, 1107, 1115, 1153, 1315, 1331,

1359, 1583, 1591, 1718, 1842, 1854, 1866, 1900, 2259,

2274, 2307, 2326, 2340]), (['agreement'], [856, 1585,

1598, 2205]), (['agree'], [875, 1047, 1651, 1672])]

Fig. 9. The indexes, or positions, of the appearances of the keywords.

Another function named sentence is used to find the

sentences that contain the appearances of the keywords.

def sentence(pos,retList=caseTokens):

 length = len(caseTagged)

 stop = length-1

 start = 0

 for k in range(pos+1,length):

 if caseTagged[k][1] == '.':

 stop = k

 break

 for k in range(pos-1,-1,-1):

 if caseTagged[k][1] == '.':

 start = k+1

 break

 return(retList[start:stop+1])

Fig. 10. The function sentence, whose purpose is to retrieve the sentence that

includes the token at index pos.

Some of the sentences found by the function sentence are

shown below. In addition to the sentence, we also include the

index of the keyword in the sentence and the two preceding

and two succeeding tokens.

875 -> Mosley also agreed to perform

[('Mosley', 'NNP'), ('also', 'RB'), ('agreed',

'VBD'), ('to', 'TO'), ('perform', 'VB'), ('all',

'DT'), ('necessary', 'JJ'), ('slab', 'NN'), ('and',

'CC'), ('foundation', 'NN'), ('work', 'NN'), ('for',

'IN'), ('the', 'DT'), ('new', 'JJ'), ('building',

'NN'), ('.', '.')]

1047-> building and agreed to make

[('GCF', 'NNP'), ('instructed', 'VBD'), ('Mosley',

'NNP'), ('to', 'TO'), ('proceed', 'VB'), ('with',

'IN'), ('construction', 'NN'), ('of', 'IN'), ('the',

'DT'), ('new', 'JJ'), ('building', 'NN'), ('and',

'CC'), ('agreed', 'VBD'), ('to', 'TO'), ('make',

'VB'), ('progress', 'NN'), ('payments', 'NNS'), ('to',

'TO'), ('Mosley', 'NNP'), ('as', 'IN'), ('follows',

'VBZ'), (':', ':'), ('(', '('), ('1', 'CD'), (')',

')'), ('payment', 'NN'), ('for', 'IN'), ('the', 'DT'),

('concrete', 'NN'), ('slab', 'NN'), ('upon', 'IN'),

('completion', 'NN'), ('of', 'IN'), ('all', 'DT'),

('slab', 'NN'), ('and', 'CC'), ('foundation', 'NN'),

('work', 'NN'), (',', ','), ('including', 'VBG'),

('authorized', 'JJ'), ('additions', 'NNS'), (';',

':'), ('(', '('), ('2', 'CD'), (')', ')'), ('payment',

'NN'), ('for', 'IN'), ('cost', 'NN'), ('of', 'IN'),

('building', 'NN'), ('materials', 'NNS'), ('upon',

'IN'), ('delivery', 'NN'), ('of', 'IN'), ('the',

'DT'), ('materials', 'NNS'), ('to', 'TO'), ('GCF',

'NNP'), ("'s", 'POS'), ('plant', 'NN'), (';', ':'),

('and', 'CC'), ('(', '('), ('3', 'CD'), (')', ')'),

('payment', 'NN'), ('of', 'IN'), ('the', 'DT'),

('balance', 'NN'), ('of', 'IN'), ('the', 'DT'),

('contract', 'NN'), ('upon', 'IN'), ('completion',

'NN'), ('of', 'IN'), ('the', 'DT'), ('building',

'NN'), ('.', '.')]

1115-> . The contract price for

[('The', 'DT'), ('contract', 'NN'), ('price', 'NN'),

('for', 'IN'), ('slab', 'NN'), ('and', 'CC'),

('foundation', 'NN'), ('work', 'NN'), ('was', 'VBD'),

('$', '$'), ('20,714.00', 'CD'), (';', ':'), ('cost',

'NN'), ('of', 'IN'), ('the', 'DT'), ('building',

'NN'), ('materials', 'NNS'), ('was', 'VBD'), ('$',

'$'), ('46,031.00', 'CD'), (',', ','), ('and', 'CC'),

('a', 'DT'), ('balance', 'NN'), ('of', 'IN'), ('$',

'$'), ('8,537.00', 'CD'), ('was', 'VBD'), ('due',

'JJ'), ('upon', 'IN'), ('completion', 'NN'), ('of',

'IN'), ('the', 'DT'), ('building', 'NN'), ('.', '.')]

1153-> for the contract was $

[('Total', 'JJ'), ('consideration', 'NN'), ('for',

'IN'), ('the', 'DT'), ('contract', 'NN'), ('was',

'VBD'), ('$', '$'), ('75,282.00', 'CD'), ('.', '.')]

Fig. 11. Some retrieved sentences by the function sentence.

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

19

These retrieved sentences illustrate the contract between

the plaintiff and the defendant. However, some retrieved

sentences are related more to the reasoning and facts of the

case than to the contract. Some of them are listed as follows:

1651-> . We agree that the

[('We', 'PRP'), ('agree', 'VBP'), ('that', 'IN'),

('the', 'DT'), ('prefabricated', 'JJ'), ('building',

'NN'), ('is', 'VBZ'), ('a', 'DT'), ('``', '``'),

('good', 'JJ'), ("''", "''"), ('under', 'IN'),

('Article', 'NNP'), ('2', 'CD'), ('of', 'IN'), ('the',

'DT'), ('U.C.C.', 'NNP'), (',', ','), ('but', 'CC'),

('we', 'PRP'), ('do', 'VBP'), ('not', 'RB'), ('agree',

'VB'), ('that', 'IN'), ('the', 'DT'), ('U.C.C',

'NNP'), ('.', '.')]

1842-> to the contract . HN2

[('The', 'DT'), ('dispositive', 'JJ'), ('question',

'NN'), (',', ','), ('however', 'RB'), (',', ','),

('is', 'VBZ'), ('not', 'RB'), ('whether', 'IN'),

('the', 'DT'), ('new', 'JJ'), ('building', 'NN'),

('conforms', 'NNS'), ('to', 'TO'), ('the', 'DT'),

('existing', 'VBG'), ('building', 'NN'), (',', ','),

('but', 'CC'), ('whether', 'IN'), ('it', 'PRP'),

('conforms', 'VBZ'), ('to', 'TO'), ('the', 'DT'),

('contract', 'NN'), ('.', '.')]

Fig. 12. Some retrieved sentences that are more related to the reasoning and

facts of the case.

To differentiate the sentences in Fig. 11 from those in Fig.

12, note that the word “agreed” in Fig. 11 has the tag VBD,

meaning that it is a past tense verb; but the word “agree” in

Fig. 12 has the tags VBP and VB, meaning that it is

respectively a non-third-person singular present tense verb

and a base form verb. The contract of the example court

decision must have been made in the past. Hence, the word

“agreed” in Fig. 11 gives us a clue that the sentences in Fig. 11

are related to the formation of the contract. In addition,

“Mosley” and “GCF”, the plaintiff and the defendant of the

case, are the singular, proper nouns (NNP) in the sentences in

Fig. 11. However, “We”, a personal pronoun, is the subject of

the sentence in Fig. 12. This provides more evidences to our

claim. For the word “contract,” both sentences in Fig. 11

contain dollar amounts while the one in Fig. 12 does not. This

provides us clues to differentiate the sentences in Fig. 11 and

12.

IV. CONCLUSIONS

This paper presents the steps that we take to extract

relevant sentences from a case file according to an ontology

created for the type of law suits of interest. Although this is

only the beginning of our investigation, this research project

has already shown promises in developing automated systems

to facilitate legal researches, lighting the burdens of legal

practitioners.

Many obstacles remain to be overcome. Although the

NLTK module is constantly making progress, some of its

functions need further improvements. Note that one of the

sentences in Fig. 12 is not complete no matter whether our

own function sentence or the one provided by NLTK was

used. Hence, tokenization must be done better. In addition,

after relevant passages are extracted, more concrete

information from the extracted sentences need to be garnered

before we can feed those information into a deep learning

system.

REFERENCES

[1] S. Bird, E. Loper, and E. Klein, Natural Language Processing with

Python, O’Reilly Media Inc. 2009.

[2] K. Clark, D. Sharma, R. Qin, C. G. Chute, and C. Tao, “A use case

study on late stent thrombosis for ontology-based temporal reasoning

and analysis,” Journal of Biomedical Semantics, vol. 5, no. 1, pp. 49,

2014.

[3] B. Fazzinga, G. Gianforme, G. Gottlob, and T. Lukasiewicz, “Semantic

web search based on ontological conjunctive queries,” Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 9, no. 4, pp.

453-473, 2011

[4] A. Kementsietsidis, L. Lim, and M. Wang, “Supporting

ontology-based keyword search over medical databases,” AMIA

Annual Symposium Proceedings, pp. 409-413, 2008.

[5] D. Lonsdale, D. Embley, Y. Ding, L. Xu, and M. Hepp, “Reusing

ontologies and language components for ontology generation,” Data &

Knowledge Engineering, vol. 69, no. 4, pp. 318-330, 2010.

[6] M. Silberstein and J. McGeever, “The search for ontological

emergence,” The Philosophical Quarterly, vol. 49, no. 195, pp.

182-200, 1999.

[7] C. Tao and D. Embley, “Automatic hidden-web table interpretation,

conceptualization, and semantic annotation,” Data & Knowledge

Engineering, vol. 68, no. 7, pp. 683-703, 2009.

[8] N. Xue, “Book review: S. Bird, E. Loper, and E. Klein, natural

language processing with python,” Natural Language Engineering,

vol. 17, no. 3, pp. 419-424, 2011.

Wai Yin Mok is a professor of information systems at

the University of Alabama in Huntsville. His research

interests include database systems, business

workflows, natural language processing and machine

learning. He has published papers in ACM

Transactions of Database Systems, IEEE Transactions

of Knowledge and Data Engineering, Information

Systems, Decision Support Systems, Data and

Knowledge Engineering and many other journals.

Author’s formal

photo

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

20

