

Abstract—Most recent efforts on bringing ontologies into

mainstream programming languages were hindered by some

fundamental issues; mainly the lack of expressiveness of

programming languages compared to the declarative nature of

ontological languages as well as the different assumptions on

which reasoning in these languages is based on. In this paper

we give the idea of adopting ontological programming

approaches a second thought by proposing a prototype for a C#

ontological knowledgebase system where ontologies are

expressed directly in an executable form. We present our

experience on bridging the semantic gab in general purpose

programming languages and on exploiting metaprogramming

and the dynamic compilation feature of modern compilers for

performing certain entailment queries without the need for the

bulky ontology classification step usually required in the case of

conventional ontological tools.

Index Terms—Dynamic compilation, executable ontologies,

metaprogramming, OntoJIT, OWL, semantic programming.

I. INTRODUCTION

The considerable success of Model Driven Development

(MDD) [1] inspired experts working in the neighboring

domain of Knowledge Representation (KR) to introduce

ontologies into the landscape of software application

development as formal domain models. Their efforts yielded

the term Ontology Driven Software Development (ODSD)

[2], a methodology that is ignited by the semi or fully

automatic translation of concepts of an ontology, usually

expressed in a specific language such as the Web Ontology

Language (OWL), into a general-purpose programming

language that can be used throughout the rest of the

development process.

ODSD was a step forward in the direction of bringing

knowledge representation techniques to the conventional

object-oriented modeling and software engineering

communities but it only offered little utility of the imported

ontologies due to: 1) The semantic gap between the

declarative and more expressive nature of ontological

languages and the restricted formal general-purpose

programming languages. 2) The fact that ontological KB

systems are based on a different, and to some extent opposing,

Open World Assumption (OWA) compared to the Closed

World Assumption (CWA) on which most database and

information systems are built.

These two problems need to be addressed for the idea of

Manuscript received February 5, 2018; revised May 10, 2018.

S. Baset and K. Stoffel are with the Information Management Institute of

University of Neuchâtel, A.L.Breguet 2, CH-2000 Neuchâtel, Suisse (e-mail:
sohaila.baset@unine.ch, kilian.stoffel@unine.ch).

integrating ontologies into mainstream programming

languages to bring its potentials. I.e. beside the rapid

application development aspects of the integration, it should

be possible to perform logical inferences to entail implicit

knowledge from the explicitly stated facts in the integrated

ontologies. Hence our motivation is to deploy programming

languages as a new means of expressing ontologies all while

maintaining their semantic profile. Our interest lies

particularly in exploiting language features such as reflection,

lambda expressions and dynamic compilation for performing

inference queries about the imported ontologies in their

executable form.

In this paper we present a prototype for an ontological KB

system where ontologies are expressed directly in an

executable form (C# code statements) that serves as a

programming interface for accessing and using ontologies

within an object-oriented programming language. We show

through some examples how expressing ontologies as code

constructs, with the help of native programming language

support, allows for performing certain entailment queries

without the need for the bulky ontology classification step

usually required in the case of conventional ontological tools

such as Protégé or OWL API.

II. BACKGROUND

As the work proposed in this paper lies at the crossroads

between knowledge representation and software languages,

we will try in this section to briefly cover from the two

paradigms the basic concepts that are essential to the

understanding of the rest of the paper.

A. Ontologies

“Ontologies”, in plural form, is an engineering term

derived from the ancient philosophical Greek term Ontology.

Ontologies in the context of knowledge representation are

formal abstract models used by computers systems to

describe and share knowledge about the real world. This is

achieved by explicitly defining the concepts relevant to the

domain, as well as the relationships between these concepts,

using a formal computer language to avoid ambiguity or

incomplete specifications.

These key aspects of ontologies are put together in a

concise definition by Gruber et al in [3]: "An ontology is a

formal and explicit specification of a shared

conceptualization".

What differentiates ontological modeling from other

modeling paradigms such as UML or Entity Relationship

modeling is that ontologies are intended a priori to be shared

and they are therefore application-independent to a certain

S. Baset and K. Stoffel

OntoJIT: Exploiting CLR Compiler Support for

Performing Entailment Reasoning over Executable

Ontologies

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

10doi: 10.18178/ijke.2018.4.1.093

extent. This calls for a standard ontological language to be

used when building and sharing ontologies and in response to

this call, many ontology languages were proposed during the

last two decades [4], [5] Nowadays, ontology modeling is

largely dominated by the web ontology Language OWL, the

W3C standard language for the semantic web. OWL has two

versions OWL and OWL 2 and both versions has got many

sub-languages that are varying in expressiveness at an

increasing complexity overhead [6], [7] The most restricted

sub-language is OWL Lite and the most expressive one is

OWL Full which has a very expressive vocabulary but is not

anymore decidable. In between OWL Lite and OWL Full, we

find OWL DL, a language based on Description Logics (DL)

[8] that offers a good balance between expressiveness and

decidability for most KR applications.

Ontologies defined in OWL consists of classes, properties

and individuals (instances of classes) all of which are

designated by axioms of class, data range, datatype and

object property expressions [6].

B. Metaprogramming

Metaprogramming refers to the programming paradigms

and the means by which a program has knowledge of itself or

can manipulate itself. To that end, a metaprogram is a

program that writes, analyses or transforms programs

including itself. This self-modifying code feature of

metaprograms allows for significant flexibility in handling

runtime code changes efficiently without recompilation. It

can also help reducing the development time by minimizing

the number of lines of code needed to express a solution. In

order to support such features, programs in

metaprogramming are treated as data; they are usually called

object-programs where the term object-program simply

denotes a sentence in a formal language. By manipulating

object-programs, i.e. constructing, combining or fragmenting

them, the metaprogram can evolve. We call the language in

which the metaprogram is written the metalanguage and the

language of the programs that are manipulated the object

language. The ability of a programming language to be its

own metalanguage is called reflection [9].

Metaprogramming is an approach that is not equally

supported by all programming languages. Some languages,

such as CaML [10], are designed with metaprogramming in

the core of their philosophy. Dynamic languages like Prolog

and smalltalk have fundamental metaprogramming features

[11]. Macros in Lisp and Scala also provide strong support

for metaprogramming [12], [13], whereas Python

programmers usually use meta classes. When it comes to

strongly typed languages, however, the emphasis on such

features becomes less evident. This does not mean that

metaprogramming is not supported in many of these

languages; C++ offers templates for metaprogramming [14],

Java programs have annotations and .Net languages use

annotations [15] and/or reflection to produce meta programs

[16], [17]. The proposed prototype in this paper relies heavily

on the reflection feature of C# in addition to the .Net libraries

for dynamic code compilation.

C. Dynamic Compilation

Dynamic compilation is an implementation technique

deployed by some programming languages to improve

program execution performance by combining the two

traditional approaches to translation to machine code:

interpretation and ahead-of-time compilation (AOT). AOT

compilers translate, possibly over some intermediate steps,

the program code written in a high-level language such as C

or C++, or an intermediate language such as .NET Common

Intermediate Language (CIL) or Java bytecode into an

optimized native machine code. Interpreters, on the other

hand, translate the code line by line and perform execution

immediately eliminating the need for the intermediate

compilation steps. Dynamic compilation aims at getting the

advantages of both approaches, i.e. the speed of compiled

code with the flexibility of interpretation. A dynamic

complier continues translating high level code after the

program execution has started so that the compiler would

have access to the runtime environment information that

were unavailable to AOT compilers and can therefore enjoy

the flexibility of interpretation while maintaining the

performance optimization of compilation.

In the context of the work presented in this paper, the

ability to compile code at runtime is an essential prerequisite

to the parsing component of the proposed prototype. It

represents the mechanism by which the asserted axioms from

OWL source files are translated into C# code statements and

further integrated into the executable of the runtime

environment.

III. THE PROPOSED KB PROTOTYPE

The alliance between the logic-based approaches of

knowledge representation and the powerful techniques of

modern programming languages offers some new

possibilities for performing entailment reasoning at no price.

If ontologies were readily available for the developers as

code objects in their programming environment, then

exploiting language features such as reflection and lambda

expressions allows for more control over entailment query

design and execution as opposed to the traditional protocol of

loading the ontology into data objects and globally

classifying it via a DL reasoner before performing any

entailment query.

To validate the afford mentioned ideas, we present

OntoJIT Fig. 1.; a working prototype for an ontological KB

system where ontologies are directly expressed in an

executable form (code statements) that serves as a

programming interface for accessing and using an ontology

within an object-oriented language. Entailment tasks such as

partial query classification and query answering are powered

by the built-in programming language support without the

need for the bulky ontology classification as a prior step

usually required in the case of conventional ontological tools

such as Protégé or OWL API.

The proposed prototype and the resulting executable

ontologies are entirely written in C#. Ontology

transformation into runtime executable is realized using the

Common Language Runtime (CLR) compiler of the .Net

environment (the Just-in-Time Compiler JIT, hence the name

OntoJIT) whereas reasoning tasks rely on the built-in

object-oriented inheritance and the metaprogramming

techniques of the C# language.

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

11

Fig. 1. OntoJIT architecture.

A. Owl Ontologies or Direct Ontologies

OntoJIT offers two possibilities for expressing ontologies

as executables. First one is to translate existing OWL

ontologies via a parsing component that takes as input

ontologies in RDF/XML or OWL/XML format. It produces

then the corresponding C# code namespace which will be

dynamically compiled at runtime as part of a compile unit

before being accessible as a .dll or .exe executable. Ontology

translating option serves a double objective in our work; first

of all, it allows us to bootstrap the KB development process

by reusing the readily available ontologies on the web. Also,

and more importantly, through this translation step we can

validate the hypothesis that in spite of the expressiveness gap

between OWL and formal programming languages, it is still

possible to maintain the semantic profile of the source

ontology in its new executable form. This task is quite

difficult because the declarative nature of OWL compared to

the less expressive target programming language and the

fundamental differences between ontological and

object-oriented schools of modeling impose many challenges

on the automatic translation process. The OntoJIT parsing

component adopts a simple yet effective approach to bridge

the problematic semantic gap mainly by relaying on a

meta-properties code layer to cover up for the missing

explicit semantics in C#. Table I. provides more details on the

mapping between OWL axioms and their C# counterpart

constructs. OntoJIT also supports blank RDF nodes usually

present in OWL to anonymously represent a property

restriction or class description axioms without explicitly

naming a concept. Though in our implementation, blank

nodes are not anonymous; they are created as class

definitions with automatically (and deterministically)

generated names to make them available for subsequent

inference tasks. On the other hand, since these nodes are not

explicitly part of the ontology class definitions, they get the

private access modifier and are therefore invisible from

outside the namespace they belong to. OntoJIT parser treats

imported namespaces in OWL source as namespaces in the

target output code. When the parser reads an owl:imports

term, it triggers a recursive call to the main parsing routine

for all imported ontologies until an import closure is

achieved.

Fig. 2. (a) A code snippet produced by the parser.

Fig. 2. (b) A code snippet produced by the parser.

Fig. 2. (a) and (b) show two code snippets of the

intermediate C# code produced by the OntoJIT parser for

some ontologies that we will introduce in the next section. As

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

12

listed in Table I, additional meta-properties are used to bridge

the semantic expressiveness gap. In the case of multiple

inheritance, for example, the subClassOf property is used in

addition to the built-in single inheritance supported in C#.

The meta-properties corresponding to terminological axioms

are static (i.e. shared among all instances) whereas meta

properties describing individuals (owl:AllDifferent,

owl:differentFrom and owl:sameAs) are non-static. All

meta-properties are first defined in the top-level class for both

OWL concepts and OWL properties and then inherited, and

masked where necessary, by sub classes in the hierarchy.

TABLE I: OWL DL AXIOMS AND THEIR C# COUNTERPARTS IN ONTOJIT.

As an alternative to translating existing OWL ontologies,

the experience we obtained writing the parsing component

enabled us to establish some grounding for directly

expressing ontologies as C# code. As a matter of fact, directly

expressing code ontologies boils down to inheriting a certain

class hierarchy and implementing the right interfaces. Both

OWL and direct C# ontologies will end up in the compile unit

to be compiled at runtime. The resulting executable ontology

is then available for subsequent queries via the C# built-in

Language Integrated Query (Linq) [18].

B. Reasoning over Executable Ontologies

In theory, as long as the semantic profile of an ontology is

maintained, the set of reasoning tasks that were decidable in

its OWL version should also be decidable in its new

executable form. This is mainly because the entailment

procedure is orthogonal to the different representations

formats of OWL concepts. In other words, what is more

interesting in reasoning over executables ontologies is not to

perform reasoning using the present logical entailment

algorithms but to explore what new possibilities the new

executable representation can bring.

For that purpose, we can benefit from the new palette of

metaprogramming and dynamic compilation tools offered by

the language compiler. For example, we can rely on C#

reflection to access into type information of OWL concepts

now represented as C# classes. This is an out-of-the-box

feature that allows us to retrieve the transitive closure of all

sub classes of a given concept (or its ancestors).

C# Linq queries make it no longer necessary to use a query

editor or write queries in a separate language such as

SPARQL [19]. Instead, developers can directly write their

questions as native C# queries against the current runtime

assembly containing the ontological KB facts. Complex

entailment queries are also possible to formulate using

lambda expressions as predicates in the body of the query.

Another important benefit that comes with the new

executable representation is the built-in support for

object-oriented inheritance that can be exploited to add a

procedural extension to the imported ontology. To take a

concrete example, let's consider the small interface and the

class definition shown in Fig. 3. The class Thing, which is the

corresponding C# class to OWL top concept, is set to

implement the IClassifiable interface.

Fig. 3. Partial classification via class inheritance.

All translated OWL concepts are classes that inherit either

directly or indirectly from the class Thing. This means they

all implement the IClassifiable interface and have,

therefore, their implementation of the method Classify().

Now it is possibly to call the classify method on a concept

class in any level of the type tree hierarchy and to recursively

classify all classes below the selected one. This provides the

developer with significantly greater flexibility when working

with ontologies with large terminological boxes because it is

no longer necessary to always perform global classification

on the whole ontology but rather on the ontology's "subtree"

of interest for the given task.

Finally, the execution of the Classify() method may

result in entailing new implicit semantics and thus in

modifying the code to represent the newly available

information. The resulting code modification can be

materialized and reflected into the runtime executable by

means of dynamic compilation.

C. Query Interface

In cases where abstracting the technical details of the

lambda expressions and Linq queries is desired, an optional

encapsulating query interface layer completes the prototype.

This layer makes it possible for users to specify query terms

without having to deal with the corresponding Linq

expressions.

Some example queries are provided in the following

demonstration section.

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

13

IV. DEMONSTRATION

For demonstrating some of the new possible forms of

entailment queries using executable ontologies we chose two

well-known ontologies in the domain of knowledge

engineering. The first one is the gene ontology (GO)
1
, a large

ontology that has around 43585 terms and 93265 relations

with respect to three aspects: molecular functions, cellular

components and biological processes [20].

The second ontology is the Stanford Pizza Ontology
2
; a

rather small ontology but very useful in validating logical

entailment queries since it was developed as a tutorial for

demonstrating the different OWL DL constructs.

After successfully parsing the ontologies into runtime

executables, we designed a test to run a set of entailment

queries against the executable ontology and to automatically

compare the query results with the results obtained by

Protégé using both HermiT and FaCT++ reasoners [8]. Most

tests results were identical except for some cases involving

OWA reasoning that we will discuss in the following section.

A. Some Example Queries

In this section we present some of the queries we used to

test entailment reasoning potentials over executable

ontologies; we limit the scope in this paper for testing

terminological entailment about concepts in an ontology and

we don’t include queries about assertional axioms. Before

presenting the queries and discussing the obtained results, it

is worth emphasizing that OntoJIT queries are entirely based

on the integrated query mechanism of C# and do not require a

separate reasoning step usually inevitable -and extremely

heavy in large ontologies like the gene ontology- in any OWL

DL entailment query.

To start simple, we will first consider the DL query to find

all subtypes of the concept chromosome. In this case, all we

have to do is to consider the transitive closure over two

relations; the class inheritance (which is readily available via

the type information in the programming language) as well as

the equivalent class meta property. The results are shown in

Fig. 4.

Fig. 4. Query results for the term 'chromosome'.

A slightly more complicated query to answer is to find all

1 The Gene Ontology Consortium: http://www.geneontology.org/
2 www.protege.stanford.edu/ontologies/pizza/pizza.owl

chromosomes that are part of a cytoplasm. This translates

into the conjunctive DL query:

 y))cytoplasm(y)is_part(x,ome(x)x.(chromos

The necessary axioms to answer this query from the source

gene ontology are translated into C# type information and are

accessible via reflection. The C# Linq query we used is

shown in Fig. 5. (a) and the results are listed in Fig. 5. (b).

Fig. 5. (a) C# Linq query for chromosomes that are part of a cytoplasm.

Fig. 5. (b) Linq query results

For the pizza ontology we could adopt a more systematic

approach for query results' validation thanks to its relatively

small number of terminological axioms. As a fixed reference

model, we used the query of the Pizza Finder
3
 application to

suggest pizzas that have some desired toppings but none of

the specified excluded toppings. We automated query term

generation based on a large random subset of possible

combinations of included and excluded toppings. We then

ran the same queries in OntoJIT as well as in the Pizza Finder

Java application.

Query evaluation in Java application relies on creating a

temporary concept of conjunctive terms and negated terms

and finding all concepts in the ontology that are subsumed by

the just created concept. This requires a prior ontology

classification step to be performed by the DL reasoner. In

OntoJIT, on the other hand, we formulated the query as the

relative complement A\B of two sets A and B. Where A and

B are the sets denoting the transitive closures over the

subclass and equivalent class meta-properties of included and

excluded topping classes respectively. The obtained query

results from the two approaches were always matching

except for the few cases where the open world assumption

used in DL entailment forbids entailing the truth value of the

corresponding query term. On the other hand, the closed

world assumption adopted in OntoJIT allows query

evaluation to be more relaxed and to return more results in the

result set. As a concrete example, we can consider the query

to find all pizzas that have meat among other toppings but are

not spicy. The query results returned in OWL API and

OntoJIT are: {“American”,”FourSeason”} and

3 https://github.com/owlcs/pizzafinder

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

14

{“ American”,”Capricciosa”,”FourSeason”,”LaReine”,”Pare

mense”,”Siciliana”} respectively.

The set relative complement approach of OntoJIT assumes

reasoning in a closed world where sets are complete. The

query evaluation would thus consider pizzas that have any

kind of meat and would similarly exclude all spicy pizzas

according to the facts present in the knowledge base. This

means that it does not consider “LaReine” as a spicy pizza

since nothing related to spiciness was present in the KB.

Contrarily, the DL reasoner would look for axioms stating

spiciness information and when it fails to find any, it forbids

deducing further conclusions about the concept and “LaReine”

would not therefore belong to the query results.

V. DISCUSSIONS

While the idea of having all the capabilities of ontological

knowledgebase systems at the doorstep of our preferred

programming language environment is alluring, the transition

between the two different schools is still no free lunch. In the

following sections, we shed some light into some of the

challenges we encountered when implementing OntoJIT.

A. The Semantic Gap

The semantic richness of ontological languages makes it

very difficult to find a programming language counterpart to

express all possible OWL axioms. As an example we can

consider finding a native programming counterpart for OWL

DL terms such as: owl:disjointWith used to indicate that a

class is disjoint with another class and owl:equivalentClass

used to indicate an equivalent class. In OOP, all classes are

disjoint by default so there is no built-in mechanism to

selectively group disjoint ones. Same goes for indicating an

equivalent class; in plain OOP there is no point in defining

another class if there exists an equivalent one already. The

approach we took to overcome these limitations is simply to

rely on a meta-properties layer to compensate for the missing

semantics [21]. In the literature [22], [23], there exist some

other interesting attempts trying to stretch the expressiveness

of modeling in Java to that of OWL DL by enforcing some

constraints and design patterns: Interfaces for multiple

inheritance, special listeners on property accessors, type

checking for domain and range properties, etc. While we see

the motivation behind this approach, we believe that it entails

some twisting in the interpretation of OO design principles

and what is originally supposed to be explicit semantics in

OWL is becoming rather implicit and dependent on the

interpretation of the "special purposes" patterns used.

B. Open World Assumption Reasoning

Most existing ontologies in the semantic web are OWL DL

ontologies. I.e. they are based on the Open World

Assumption OWA of Description Logics. The OWA argues

that since it is not possible for an agent to have complete

knowledge then it is not possible, via deductive reasoning, to

infer the truth value of a fact not present in its base (explicitly

or implicitly) irrespective of whether or not it is known to be

true.

While OWA makes sense in the context of description

logics and other pure logic programming languages, it is still

rather counter-intuitive and a major source of confusion for

most conventional software developers in contrast to the

closed world assumption in other common modeling and data

paradigms. Furthermore, it has been argued that closed world

assumption and local closed world assumption LCWA [24]

are largely sufficient in many application domains.

VI. RELATED WORK

Scanning literature in both areas of knowledge

representation and software engineering for work related to

executable ontologies reveals a relatively scattered body of

research. The majority of related papers are concerned with

the modeling aspects of OWL and how it could be used to

enrich application semantics without referring to reasoning

possibilities.

The difficulty of utilizing OWL ontologies in conventional

software projects was behind the work presented in [25]: The

authors demonstrate some of the fundamental differences

between the "subject-predicate-object" school of modeling

and the object-oriented school. According to the authors, the

combined use of ontologies with standard programming

practices would enable the development of semantic-rich

enterprise applications and they suggest a framework for

translating some ontology constructs into Enterprise Java

Beans.

In [2], the primary intention is to provide guidance on how

to build real-world semantic web applications. The authors

draw analogy between deploying ontologies as high-level

models in software development and the approach used in

Model Driven Architecture MDA. They also suggest a

software architecture for web services and agents for the

semantic web driven by domain ontologies.

The authors of [26] proposed a hybrid modeling software

framework that combines the object-oriented representation

of a domain with its ontological representation after

analyzing the advantages and disadvantages of such hybrid

modeling approach.

OWL to UML mapping has also a got good share in the

literature: [27] presents a UML-based visualization of OWL

DL ontologies while the work done in [28] provides a

rigorous comparison between UML and OWL as two

flagship languages for artificial intelligence and software

engineering communities; the authors argue that based on the

core definitions of ontologies and models, none of the

common informal distinctions made between the two terms is

actually justifiable. Instead, ontologies themselves are to be

regarded as models. Furthermore, without changes to the

currently used ways of distinguishing between models and

ontologies the confusion around the two terms will continue

to arise.

Finally, the OpenRDF API, along with its satellite projects

Elmo/Alibaba
4
, provides object triples mapping for creation

of flexible RDF-based applications. Another object-oriented

API for managing RDF is ActiveRDF [29], it offers

schema-free manipulation and querying of RDF data while

conforming to RDF(S) semantics.

4 OpenRDF project http://www.openrdf.org/ and Elmo/Alibaba

https://bitbucket.org/openrdf/alibaba

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

15

http://www.openrdf.org/

International Journal of Knowledge Engineering, Vol. 4, No. 1, June 2018

16

VII. CONCLUSION AND FUTURE WORK

In this paper, we reported our experience on using main

stream programming languages to represent ontologies and to

perform some entailment reasoning query over the

executables. We proposed a prototype for an ontological

knowledgebase system where ontologies are directly

represented via C# classes and instances. We also

demonstrated through examples some of the new possibilities

to exploit metaprogramming features to answer certain

entailment queries out of the box and eliminating the need for

the bulky pre-step of ontology classification.

We are also working on analyzing partial ontology

classification algorithms by spanning the tree of type

information using the language built-in support for

inheritance.

For the future work, we are interested in extending the set

of potential entailment tasks to support assertional queries as

well as more terminological queries besides the ones

demonstrated in this paper.

REFERENCES

[1] C. Atkinson and T. Kuhne, “Model-driven development: A
metamodeling foundation,” IEEE Software, vol. 20, pp. 36-41, 2003.

[2] H. Knublauch, “Ontology-driven software development in the context

of the semantic web: An example scenario with Protege/OWL,” in Proc.
chez 1st International Workshop on the Model-Driven Semantic Web

(MDSW2004), 2004.

[3] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowledge Acquisition, vol. 5, pp. 199-220, 1993.

[4] I. Horrocks, “DAML+OIL: A description logic for the semantic web,”

IEEE Data Eng. Bull., vol. 25, pp. 4-9, 2002.
[5] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-oriented

and frame-based languages,” Journal of the ACM (JACM), vol. 42, pp.

741-843, 1995.
[6] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “Owl

2 web ontology language: Profiles,” W3C Recommendation, vol. 27, p.

61, 2009.
[7] B. Motik, P. F. Patel-Schneider, and B. C. Grau, “Owl 2 web ontology

language direct semantics,” W3C Recommendation, vol. 27, 2009.

[8] F. Baader, The Description Logic Handbook: Theory, Iplementation and
Applications, Cambridge University Press, 2003.

[9] P. Maes, “Concepts and experiments in computational reflection,” chez

ACM Sigplan Notices, 1987.
[10] F. Pottier, “An overview of Cml,” Workshop on ML, 2005.

[11] H. Abramson and M. H. Rogers, Meta-programming in Logic

Programming, MIT Press, 1989.
[12] E. Burmako, “Scala macros: Let our powers combine! On how rich

syntax and static types work with metaprogramming,” in Proc. the 4th

Workshop on Scala, 2013.
[13] D. Hoyte, Let Over Lambda, Lulu. com, 2008.

[14] D. Abrahams and A. Gurtovoy, “C++ template metaprogramming:

Concepts, tools, and techniques from Boost and beyond,” Pearson
Education, 2004.

[15] K. Czarnecki and T. U. W. Eisenecker, “Generative programming,” in

Edited by G. Goos, J. Hartmanis, and J. van Leeuwen, p. 15, 2000.
[16] W. Schult and A. Polze, “Aspect-oriented programming with c# and.

net,” in Proc. Fifth IEEE International Symposium on chez

Object-Oriented Real-Time Distributed Computing, 2002.(ISORC
2002), 2002.

[17] C. Ganz Jr, “Runtime Code Compilation, “chez Pro Dynamic. NET 4.0

Applications, pp. 59-75.
[18] P. Pialorsi and M. Russo, Introducing Microsoft® linq, Microsoft Press,

2007.

[19] S. Harris, A. Seaborne, and E. Prud’hommeaux, “SPARQL 1.1 query
language,” W3C Recommendation, vol. 21, 2013.

[20] G. O. Consortium, “Expansion of the Gene Ontology knowledgebase

and resources,” Nucleic Acids Research, vol. 45, n° %1D1, pp.
D331--D338, 2016.

[21] S. Baset and K. Stoffel, “OntoJIT: Parsing Native OWL DL into

Executable Ontologies in an Object Oriented Paradigm,” chez

International Experiences and Directions Workshop on OWL, 2016.
[22] A. Kalyanpur, D. J. Pastor, S. Battle, and J. A. Padget, “Automatic

Mapping of OWL Ontologies into Java.,” chez SEKE, 2004.

[23] M. Babik and L. Hluchy, “Deep integration of python with web
ontology language,” in Proc. the 2nd Workshop on Scripting for the

Semantic Web, 2006.

[24] P. Doherty, W. Lukaszewicz, and A. Szalas, “Efficient Reasoning Using
the Local Closed-World Assumption,” in Proc. of the 9th International

Conference on Artificial Intelligence: Methodology, Systems, and

Applications, AIMSA 2000 Varna, Bulgaria, September 20--23, 2000,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 49-58.

[25] I. N. Athanasiadis, F. Villa, and A.-E. Rizzoli, “Ontologies, JavaBeans

and Relational Databases for enabling semantic programming,” in Proc.
31st Annual International Conference on Computer Software and

Applications, 2007. COMPSAC 2007.

[26] C. Puleston, B. Parsia, J. Cunningham, and A. Rector, “Integrating
object-oriented and ontological representations: A case study in Java

and OWL,” International Semantic Web Conference, 2008.

[27] S. Brockmans, R. Volz, A. Eberhart, and P. L{\"o}ffler, “Visual
modeling of OWL DL ontologies using UML, ” International Semantic

Web Conference, 2004.

[28] C. Atkinson, M. Gutheil, and K. Kiko, “On the Relationship of
Ontologies and Models.,” WoMM, vol. 96, pp. 47-60, 2006.

[29] E. Oren, R. Delbru, S. Gerke, A. Haller, and S. Decker, “ActiveRDF:

Object-oriented semantic web programming,” in Proc. the 16th
International Conference on World Wide Web, 2007.

S. Baset is a Ph.D candidate at the information

management institute in the university of Neuchâtel,
Switzerland. Before joining the institute in 2015, she

had a career as a software engineer working for

several innovative and technology-oriented
companies including her last position at Frontiers, an

open access publishing house based in the scientific

park of EPFL, Switzerland.
She completed her 5-years bachelor’s degree in computer science from

Albaath university in 2009 with a specialization in software engineering. In

2013, she obtained a Certificate of Advance Studies in information systems
from the Swiss Federal Institute of Technology - ETH Zurich. Between 2013

and 2015 she pursued a master of science degree in management of

information systems from the university of Lausanne where she worked on
the subject of resolving close-domain entity ambiguity using hybrid

similarity measures.

Her current research interests are mostly focused on enforcing the
synergies between modeling in knowledge representation and conventional

software engineering by exploiting metaprogramming and dynamic

compilation to automatically translate and incorporate ontologies into the
software development lifecycle.

K. Soffel is a senior researcher in the domain of data
mining and knowledge discovery. He has been rector of

university of Neuchâtel, Switzerland since August

2016. Prior to this position, he was a full professor at the
faculty of business and economics for the years between

1997 and 2016.

He received his bachelor of science degree from the
university of Fribourg, Switzerland in 1989 with a

double-major in mathematics and computer science. He pursued his Ph.D in

computer science from the same university and graduated in 1994. Later this
year, he moved to the United States to join College Park at the University of

Maryland as a research associate and fellow at the Johns Hopkins hospital

where he contributed to the realization of PARKA-DB, a scalable
knowledgebase system for very large ontologies.

K. Soffel has many scientific contributions ranging from theoretical aspects

to design and implementation of data mining and knowledgebase systems.

He has collaborated actively with researchers in several other disciplines of

artificial intelligence, namely on fuzzy logic and methods for decision
making process.

