
  

 

Abstract—Inter-requirements traceability refers to finding 

the relationships between requirements. Several approaches 

have been identified cooperative, conflicting, and irrelevant 

relationships between requirements. However, the current 

solutions have a lack of capturing the syntactic and semantic 

aspects of requirements, and less attention has been paid to 

relating security requirements with functional requirements.  

To overcome these limitations, we propose to use a domain 

ontology based approach, in which a domain ontology can be 

used as a domain knowledge to discover relationships between 

requirements. Our proposed solution is a hybrid approach 

which uses: 1) a syntactic parsing technique to decompose the 

requirements statements into Subject, Verb, and Complement 

constructs, 2) a domain ontology to create a knowledge 

repository about security and functional requirements concepts, 

and 3) a rule based system to build several detection rules that 

identify security requirements effects upon functional 

requirements. We evaluate our approach in a case study of 

requirements for an online medical database system that shows 

how the effect types can be determined. 
 

Index Terms—Detection rules, domain ontology, effect types, 

security requirements. 

 

I. INTRODUCTION 

As confusing requirements often increases the cost of 

software development projects, requirements analysis is 

considered as the most critical phase in software development 

life cycle. Requirements analysis concentrates on developing 

high quality requirements specification that are satisfactory to 

the customers and feasible to the developers. 

Inter-requirements traceability [1] focuses on linking 

requirements with other requirements. An example of 

Inter-requirements traceability is to find the cooperative, 

conflicting, and irrelevant relationships. Inter-requirements 

traceability has significantly influenced a number of different 

activities during software development such as consistency 

checking and impact change.  

Security requirements are considered as restrictions or 

constraints on system functionalities such as user 

identification, secure access, secure storage, and secure 

communication. More specifically, security and functional 

requirements have been defined by different studies. For 

example, Haley [2] described the security requirements as a 

 
Manuscript received November 14, 2014; revised January 16, 2015.  

Bilal Al-Ahmad was with Jordan. Now he is with Software Engineering at 

North Dakota State University, USA (e-mail: bilal.alahmad@ndsu.edu).  

Kenneth Magel and Sameer Abufardeh are with North Dakota State 

University, USA. 

part of non-functional requirements that constrained the 

functional requirements of a system. Also, Kotonya and 

Sommerville [3] define security requirements as restrictions 

or constraints on system services. In addition, Rushby [4] 

defined security requirements as common concerns of the 

system that must not occur.  

Functional requirements [5] are defined as the 

requirements that describe the system behavior by expressing 

it as the inputs to the system, the outputs from the system, and 

the relationships between inputs and outputs. Because the 

security requirements are considered as constraints on the 

functional requirements, we called relationship types as effect 

types.  

Domain ontology is a very popular semantic processing 

technique that classifies concepts and relations among 

concepts within a particular domain. Domain ontology is an 

essential element that can be used to obtain great success in 

requirements analysis phase since it lets us have a semantic 

source for requirements descriptions which supports better 

understanding of relationships between software 

requirements.   

Using domain ontology in requirements engineering helps 

to capture the requirements information, as well as reuse and 

share concepts and relations that are represented by the 

ontology. In this paper, we propose a domain ontology based 

traceability approach that helps to identify cooperative, 

conflicting, and irrelevant effects between security and 

functional requirements. 

 

II. BACKGROUND AND RELATED WORK 

Identification of cooperative, conflicting, and irrelevant 

relationships between software requirements is very 

important because it affects several significant software 

activities such as consistency checking and impact of 

requirements change. Reviewing the literature, we found that 

several studies [6]-[9] applied different approaches to identify 

cooperative, conflicting, and irrelevant relationships among 

software requirements. 

Egyed and Grünbacher [6] developed an approach for 

determining conflicts and cooperation dependencies among 

software requirements based on using both quality attributes 

of requirements and the automated traceability technique. 

Also, Liu [7] identified the conflicts and cooperation 

dependencies among uncertain software requirements based 

on using a fuzzy logic technique. 

Temponi, Yen, and Tiao [8] employed Quality Functional 

Deployment (QFD) methodology to translate customer 

A Domain Ontology Based Approach to Identify Effect 

Types of Security Requirements upon Functional 

Requirements 

Bilal Al-Ahmad, Kenneth Magel, and Sameer Abufardeh 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

24DOI: 10.7763/IJKE.2015.V1.4



  

satisfaction (i.e., customer requirements) into organization 

functions (i.e., technical requirements), and applied fuzzy 

logic based requirements analysis to represent QFD since it 

can handle the fuzzy expressions in requirements.  

Lee and Xue [9] used a goal based approach to explore 

cooperative, conflicting, and irrelevant relationships between 

user requirements. They represented the user requirements by 

building the use case models with the associated goals. But 

the current approaches have several limitations: only 

considering fuzzy requirements, neglecting the syntactic and 

semantic features of software requirements, and slight 

attention has been given to show the effects of security 

requirements upon functional requirements. 

 

III. THE DOMAIN ONTOLOGY BASED APPROACH 

To decrease the ambiguity and inconsistency of the 

informal natural language of requirements, the proposed 

approach captures both syntactic and semantic features of 

requirements statements. The syntactic aspect of requirements 

focuses on grammatical analysis of requirement statement 

constructs, while the semantic aspect of requirements focuses 

on understanding the meaning of requirements. Fig. 1 shows 

the proposed methodology. 
 

 
Fig. 1. An overview for our domain ontology detection approach. 

 

In our approach, we integrate syntactic analysis (i.e., 

syntactic parsing) and semantic analysis (i.e., domain 

ontology). Our proposed approach includes the following 

four main steps: 

1) Applying the syntactic parsing on both security and 

functional requirements statements by using a parsing 

tool [10] to split each requirements statements into 

Subject, Verb, and Complement constructs. Also, we 

consider each requirement construct as a single concept. 

Each requirement statement has three concepts: Subject, 

Verb, and Complement.  

2) Building the domain ontology to represent the domain 

concepts and relations for a particular domain. Security 

and functional requirement concepts have three types 

[11]:  

Subject-concept (which represents requirement entity), 

Verb-concept (which represents requirement action), and 

Complement concept (which represents the extra description 

for the requirement entity, or the Object that represents 

requirement target). The relations initially have seven types: 

Generalization, Aggregation, Association, Synonyms, 

Antonyms, Identical, and No-relation}.  

Fig. 2 shows the proposed domain ontology, in which the 

first three relations (i.e., Association, Generalization, and 

Aggregation) are extracted from the class diagram, Synonyms 

and Antonyms relations are extracted from WordNet lexical 

database [12], and the last two relations (i.e., Identical and 

No-relation) used to represent identical matching and 

no-matching relations between concepts.  
 

 
Fig. 2. Domain ontology for our proposed approach. 

 

1) Generating detection rules. Each detection rule includes    

three conditions (i.e., three relations between security 

and functional requirement concepts) and single 

conclusion (i.e., single effect type). Effect can be one of 

following types: Cooperates with, Conflicts with, and 

Irrelevant to. Every ontology has an engine and the rule 

based system considered as the engine for the domain 

ontology. 

2) Identifying effect-types of Security Requirement (SR) 

upon Functional Requirement (FR) based on the 

proposed detection rules. 

Our approach consists of two important parts: (1) Security 

Functional Tracing Model (SFTM), and (2) Security 

Functional Requirements Diagram (SFRD). SFTM is the 

proposed tracing model for both security and functional 

requirements while SFTM is a requirements diagram that 

illustrates the effects of security requirements upon functional 

requirements. 

A. Detection Rules 

Requirements often conflict with each other, particularly 

those from various perspectives. Furthermore, many conflicts 

among requirements are difficult to detect.  

As a result, we propose to use novel detection rules that can 

help to identify conflicts between these security and 

functional requirements.  

These detection rules are constructed using IF-THEN rules 

[13]. Every detection rule has three relations and one effect 

type. The first relation combines two Subject-concepts, the 

second relation has two Verb-concepts, and the third relation 

has two Complement-concepts. The structure for the 

proposed detection rule is as follows: 

 

 

IF Relation (Subject-concept (SR), Subject-concept (FR)) 

AND Relation (Verb-concept (SR), Verb-concept (FR)) 

AND Relation (Complement-concept (SR), 

Complement-concept (FR)) 

THEN Effect-type ∈ {Cooperates with, Conflicts with, Irrelevant 

to} 

 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

25



  

There are several detection rules that determine each effect 

type, it. In the requirements examples listed below, 

Verb-concept is formatted as italic. The following detection 

rules were developed to determine the cooperative, 

conflicting, and irrelevant effects between security 

requirement and functional requirements: 

1) Cooperative effect  

In this type of effect, the functional requirement is 

positively affected by the security requirement. Thus, both 

security and functional requirement can be implemented at the 

same time. For example: 

SR: The user can only read the student’s financial history. 

FR: The employee can retrieve the student’s payment 

history.  

The following detection rule identifies the cooperative 

effect: 

 

 
 

2) Conflicting effect 

Here, the functional requirement is negatively affected by 

the security requirement. Thus, both security and functional 

requirement cannot be implemented at the same time. For 

example:  

SR: The registrar cannot change the student’s academic 

records. 

FR:  The user can modify the student’s grades.  

The following detection rule identifies the conflicting 

effect: 

 

 
 

3) Irrelevant effect 

Lastly, in this effect the functional requirement is neither 

positively nor negatively affected by the security requirement. 

The implementation of the security requirement does not 

affect the implementation of the functional requirement.  

B. Security Functional Tracing Model  

We propose a tracing model called Security Functional 

Tracing Model (SFTM) that shows a complete tracing of all 

security and functional requirements. This model will help a 

requirements engineer to detect the effects between all 

security and functional requirements.  

This model consists of four essential subsets: security 

requirements, functional requirements, tracing and effect 

types. Each set is a subset of the superset SFTM. SFTM for 

system x is described as follow: 

1) Security Requirements set, denoted as: SR(x) = {SRi, 

SRi+1, …, SRn}, where x is the name of software system. 

2) Functional Requirements set, denoted as: FR(x) = {FRj, 

FRj+1, …, FRm}. 

3) Tracing Pairs set,  denoted as T(x) ={ (SRi, FRj), (SRi, 

FRj+1), …, (SRi, FRm), (SRi+1, 

FRj),( SRi+1,FRj+1), …, ( SRi+1, FRm), …, (SRn, 

FRj),( SRn, FRj+1), …,     (SRn, FRm)}. 

4) Effect types set, denoted as E(x) = {Cooperates with, 
Conflicts with, and Irrelevant to} Then, SFTM will be 
defined as: SFTM(x) = {SR(x), FR(x), T(x), E(x)}. 

C. Motivation Example 

If there is a system A with three security requirements 

named (SR1, …, SR3) and six functional requirements named 

(FR1, …, FR6). Then, the proposed tracing approach is to 

map the first security requirement (SR1) with all six 

functional requirements to get the following tracing pairs 

{(SR1, FR1),…, (SR1, FR6)}. Next, the second security 

requirement (SR2), until the third security requirement SR3 

proceeds through the tracing of the six functional 

requirements in order to obtain these tracing pairs: {(SR3, 

FR1),…, (SR3, FR6)}. For each pair, the effect type will be 

identified based on the predefined detection rules. Fig. 3, Fig. 

4, and Fig. 5 illustrate the tracing process and the associated 

effect types for SR1, SR2, and SR3 respectively.  
 

 
Fig. 3. Security functional tracing of SR1 for system A. 

 

 
Fig. 4. Security functional tracing of SR2 for system A. 

 

 
Fig. 5. Security functional tracing of SR3 for system A. 

 

Based on the proposed model, system A will be described 

as follows: 

1) SR(system A) ={ SR1, SR2, SR3} 

IF Generalization (registrar, user) 

AND Antonyms (cannot change, can modify) 

AND Aggregation (student academic records, student grades) 

THEN Effect-type∈ {Conflicts with} 

IF Generalization (user, employee) 

AND Synonyms (only read, retrieve) 

AND Generalization (student’s financial history, student’s 

payment history) 

THEN Effect-type∈ {Cooperates with} 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

26



  

2) FR(system A) = { FR1, …, FR6} 

3) T (system A) = {(SR1, FR1), …, (SR1, FR6),…,(SR3, 

FR1), …, (SR3, FR6)}. 

4) E(system A) = {Conflicts with, …, Cooperates with , …, 

Irrelevant to, …, Irrelevant to } 

Consequently, SFRD will be graphed as in Fig. 6, SFRD 

shows the effect types of security requirements upon 

functional requirements. This diagram has the security 

requirement at the top and a node for each functional 

requirement on the left. These nodes are color-coded to 

indicate whether or not they are affected by the security 

requirement. Different types of effects (i.e., relationships) are 

indicated by different colors. The Cooperative effect is shown 

in green, the conflicting effect is shown in red, and the 

irrelevant effect is shown in yellow. 
 

 
Fig. 6. SFRD for system A. 

 

IV. THE IMPORTANCE OF INVESTIGATING THE EFFECT TYPES 

A. Prioritization of Security Requirements 

One of the significant uses for the proposed approach is to 

prioritize security requirements based on their weight. Weight 

is calculated by counting the number of the functional 

requirements that cooperate with the security requirement. 

For example, system A has three security requirements (SR1, 

SR2, and SR3). As in Fig. 7, SR1 has three cooperated 

functional requirements (FR2, FR5, and FR6). Also, SR2 has 

four cooperated functional requirements (FR2, FR4, FR5, and 

FR6) and SR3 has only one cooperated functional 

requirement (FR5). 
 

 
Fig. 7. The cooperated functional requirements nodes with SR1, SR2 and 

SR3 for system A. 

 

Then, the weight for each security requirement is calculated 

like: 

 Weight (SR1) = 3 

 Weight (SR2) = 4 

 Weight (SR3) = 1 

Therefore, SR2 has the highest priority, and SR3 has the 

lowest priority. The security requirements prioritization is 

considered to be significant for the requirements selection 

task. 

B. Finding Association between Security Requirements 

In the proposed approach, we used the Jaccard similarity 

technique [14] to measure the association between the 

security requirements nodes using the following formula: 

 

SRi SRj
Asscoiation (SRi, SRj) = 

SRi SRj



                            (1) 

 

where: 

 SRi, SRj: represents security requirements. 

 SRi  SRj: represents the number of joint cooperated 

functional requirements nodes between SRi and SRj. 

 SRi  SRj: represents the number of all cooperated 

functional requirements nodes in both SRi and SRj. 

By applying the Jaccard similarity for the example in Fig. 6, 

the resulting association values are as follows:  

 Association (SR1, SR2) = 3/4= 0.75 

 Association (SR1, SR3) = 1/3= 0.33  

 Association (SR2, SR3) = 1/4= 0.25 

Fig. 8 represents shows a weighted graph for the 

association among SR1, SR2, and SR3. The association 

between SR1 and SR2 is 0.75, which reflects strongly 

connected requirements while the association between SR2 

and SR3 is 0.25, which reflects weakly connected 

requirements. 
 

 
Fig. 8. A weighted graph showing the association among security 

requirements SR1, SR2, and SR3 of system A. 

 

V. CASE STUDY 

In this case study, we demonstrate the effectiveness of our 

approach in the context of an Online Medical Database 

system (OMD). This system provides an interesting challenge 

because it is rich in different semantic relations. Moreover, 

the privacy and security issues are critical to such systems. To 

briefly explore the proposed approach, we trace the three 

Security Requirement (SR1, SR2, and SR3) with 18 

Functional Requirements (FR1, …, FR18). The security and 

functional requirements statements are parsed by applying the 

syntactic parser. To process requirements semantically, we 

build the domain ontology for both security and functional 

requirements.  

The domain ontology helps to create knowledge base about 

the requirements concepts and relations; this leads to an 

increase of the recognition of the requirements information. 

The domain ontology is represented in the form of a class 

diagram, which includes a single class for each concept. 

Concept can be represented as either a single term or a phrase. 

To indicate the type of concept, Subject-concept, 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

27



  

Verb-concept, and Complement-concept are stereotyped as 

<<Subject>>, <<Verb>>, and <<Compl>> respectively. 
 

 
Fig. 9. A part of domain ontology for OMD system. 

 

Fig. 9 shows a portion of the domain ontology for OMD 

system. Based on the resulting domain concepts and relations 

that we obtained from domain ontology, we constructed 

detection rules to identify the effect types between security 

and functional requirements. We show an example for the 

effect types and the corresponding detection rules of SR1 as 

follows: 

1) SR1: User can only read current illness information. 

2) FR4: The user can extract the outpatient status. 

 

 
 

3) SR1: User can only read current illness information.  

4) FR5: The user can retrieve the using drug name. 

 

 
 

5) SR1: User can only read current illness information. 

6) FR10: The user can modify current diseases. 

 

 
 

The effect types have been identified based on the detection 

rules, then SFRD can be illustrated as in Fig. 10 

According to the SFRD, we can find clearly the cooperated 

functional requirements nodes for the security requirements 

as follows:  

1) SR1 has four cooperated functional requirements: FR5, 

FR6, FR7 and FR8. 

2) SR2 has six cooperated functional requirements: FR3, 

FR5, FR6, FR7, FR8 and FR10. 

3) SR3 has ten cooperated functional requirements: FR5, 

FR6, FR7, FR8, FR9, FR11, FR12, FR14, FR15, and 

FR17. 

Therefore, the weight for each security requirement is 

calculated as follows: 

 Weight (SR1) = 4 

 Weight (SR2) = 6 

 Weight (SR3) = 10 

Based on the weight values, SR3 has the highest priority, 

and SR1 has the lowest priority. In addition, by applying the 

Jaccard method, the obtaining association values between the 

security requirements of OMD system are as follows: 

 Association (SR1, SR2) = 4/6 = 0.66 

 Association (SR1, SR3) = 4/10 = 0.40  

 Association (SR2, SR3) = 4/12 = 0.33 

Fig. 11 is a weighted graph that shows the association 

among SR1, SR2, and SR3. The association between SR1 and 

SR2 is 0.66, which reflects strongly connected requirements 

while the association between SR2 and SR3 is 0.33, which 

reflects weakly connected requirements. These association 

results will help the requirement engineer to figure out the 

strength of dependencies among the security requirements.  
 

 
Fig. 10. SFRD of OMD system. 

 

 
Fig. 11. A weighted graph showing the association among security 

requirements SR1, SR2, and SR3 of OMD system. 

 

The additional valuable usage that we can get from using 

SFRD is to find the inconsistency ratio for each security 

IF Identical (user, user) 

AND Antonyms (only read, modify) 

AND Aggregation (current illness information, current diseases) 

THEN Effect-type ∈ {Conflicts with} 

IF Identical (user, user) 

AND Synonyms (only read, retrieve) 

AND Aggregation (current illness information, using drug name) 

THEN Effect-type ∈ {Cooperates with} 

IF Identical (user, user) 

AND Synonyms (only read, extract) 

AND No-relation (current illness information, outpatient status) 

THEN Effect-type ∈ {Irrelevant to} 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

28



  

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

              

 

   

 

  

 

 

 

International Journal of Knowledge Engineering, Vol. 1, No. 1, June 2015

29

  

requirement. The inconsistency ratio is calculated by 

considering all the conflicting effects relative to the total 

number of effects. For example, as in Fig. 10, we can find the 

conflicting effects number for the security requirement as 

follows: 

 Number of conflicting effect for SR1 = 2 

 Number of conflicting effect for SR2 = 9 

 Number of conflicting effect for SR3 = 5 

 Total number of effects for each security requirement = 

18  

Then, the inconsistency ratio for each security requirement 

is calculated as follows: 

 Inconsistency ratio (SR1) = 2/18 = 11% 

 Inconsistency ratio (SR2) = 9/18 = 50% 

 Inconsistency ratio (SR3) = 5/18 = 27% 

In this case, SR2 has the highest inconsistency ratio while 

SR1 has the lowest ratio.  

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a new hybrid traceability 

approach for using syntactic parsing, domain ontology, and a 

rule based system. This proposed approach helps to identify 

cooperative, conflicting, and irrelevant effects of security 

upon the functional requirements. Our approach offers several 

benefits: 1) it serves as a structured mechanism to simplify the 

finding of effects, 2) it bridges the gap between functional and 

non-functional requirements, and 3) it supports the 

requirements analysis to improve consistency between 

conflicting requirements. The proposed model will be further 

extended by developing a tool that will help automatically 

generate all the possible combinations for concepts and 

relations in both security and functional requirements, 

automate the construction process of detection rules, and 

generate SFRD.  

REFERENCES 

[1] F. A. C. Pinheiro, “Requirements traceability,” in Perspectives on 

Software Requirements, J. C. Sampaiodo Prado Leite and J. H. Doorn, 

Eds., The Netherlands: Kluwer Academic Publishers, 2004, ch. 5, pp. 

91-113. 

[2] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Arguing 

satisfaction of security requirements,” in Integrating Security and 

Software Engineering: Advances and Future Visions, H. Mouratidis 

and P. Giorgini, Eds., Hershey, PA: Idea Group Publishing, 2007, ch. 2, 

pp. 16-43. 

[3] G. Kotonya and I. Sommerville, Requirements Engineering: Processes 

and Techniques, New York: Wiley, 1998. 

[4] J. Rushby, “Security requirements specifications: How and what?” 

presented at Symposium on Requirements Engineering for Information 

Security, Indianapolis, 2001. 

[5] R. Malan and D. Bredemeyer. (June 1999). Functional requirements 

and use cases. [Online]. Available: 

http://www.bredemeyer.com/pdf_files/functreq.pdf 

[6] A. Egyed and P. Grünbacher, “Identifying requirements conflicts and 

cooperation: How quality attributes and automated traceability can 

help,” IEEE Software, vol. 21, no. 6, pp. 50-58, Nov.2004. 

[7] X. F. Liu, “Fuzzy requirements,” IEEE Potentials, vol. 17, no. 2, pp. 

24–26, May 1998.  

[8] C. Temponi, J. Yen, and W. A. Tiao, “House of quality: A fuzzy 

logic-based requirements analysis,” European Journal of Operational 

Research, vol. 117, no. 2, pp. 340–354, Sep. 1999. 

[9] J. Lee and N. L. Xue, “Analyzing user requirements by use cases: A 

goal-driven approach,” IEEE Software, vol. 16, no. 4, pp. 92-101, July 

1999. 

[10] D. Temperley, D. Sleator, and J. Lafferty. (2014). Link Grammar 

Parser. Carnegie Mellon University. [Online]. Available: 

http://www.link.cs.cmu.edu/link/submit-sentence-4.html  

[11] X. F. Liu, K. Noguchi, and W. Zhou, “Requirement acquisition, 

analysis, and synthesis in quality function deployment,” International 

Journal of Concurrent Engineering: Research and Applications, vol. 

9, no. 1, pp. 24–36, March 2001. 

[12] C. Fellbaum. (2010). About WordNet. WordNet. Princeton University. 

[Online]. Available:  http://wordnet.princeton.edu 

[13] M. Sasikumar, S. Ramani, S. M. Raman, K. Anjaneyulu, and R. 

Chandrasekar, A Practical Introduction to Rule Based Expert Systems, 

New Delhi, India: Narosa Publishing House, 2007, ch. 7, pp. 129-130. 

[14] S. Niwattanakul, J. Singthongchai, E. Naenudorn, “Using of Jaccard 

coefficient for keywords similarity,” in Proc. the International Mult.i 

Conference of Engineers and Computer Scientists, pp. 380-384, vol. 1, 

Hong Kong, 2013. 

 

 

Bilal Al-Ahmad received the B.Sc. degree in computer 

information systems from Jordan University of Science 

& Technology, Jordan in 2006, the master’s degree in 

computer information systems from Yarmouk 

University, Jordan in 2009. Currently he is a PhD 

student in software engineering at North Dakota State 

University, USA. Before starting the PhD, he has been 

involved   in    teaching    and    research    in   software  

engineering at the Hashemite University, School of Information Technology, 

Jordan. 

 

 

Kenneth Magel earned his PhD from Brown 

University, USA in 1977. He joined the Computer 

Science Department at North Dakota State University 

since 1983. Currently he is an associate head for 

Computer Science Department at North Dakota State 

University, USA. Before joining North Dakota State 

University, he has taught in several computer science 

schools  in  Kansas,  Missouri,  and  Texas, USA.  His  

teaching interests includes courses in problem solving, software engineering, 

human-computer interaction, object-oriented systems, and programming 

languages. His research interest’s focuses on what makes programming 

difficult and programs complex, and he has published widely in the areas of 

Program Complexity Metrics and Software Testing.   

 

 

Sameer Abufardeh received the B.Sc. degree in 

computer science from Southern Illinois University, 

USA in 1994, the master’s degree in computer science 

from St. Cloud State University, USA in 2000, and 

PhD Degree in software engineering from North 

Dakota State University, USA in 2009. Currently he is 

an assistant professor of Practice in Computer Science 

Department at North Dakota State University. He has  

published several papers in software localization, software testing, global 

software development, and natural language processing. 

 

 

 

http://www.igi-global.com/book/integrating-security-software-engineering/615
http://www.igi-global.com/book/integrating-security-software-engineering/615
http://www.igi-global.com/book/integrating-security-software-engineering/615
http://citeseerx.ist.psu.edu/showciting?cid=5268924

