



Abstract—Users today need to express their informational

need in a way such that the search results can be further

analyzed to directly address the need, instead of merely

returning a list of lexical hits. In this paper we address the

problem of extracting sentiment metadata related to the user’s

topic or entity of interest along with the search results. We

propose a framework that provides the flexibility of specifying a

sentiment related informational need associated with a

particular topic of interest, along with the standard keyword

query. This information is then used to extract sentiment scores

for the expressed entity of interest based on the “hitlist” of most

relevant documents returned by the main search query. Our

experimental results based on product and movie review

datasets, demonstrate the advantages of embedding the

sentiment processing within the search engine framework.

Index Terms—Sentiment analysis, information retrieval,

query framework, text analytics, sentiment aware search.

I. INTRODUCTION

In the age of exabytes of instantly accessible online data

and given the pervasiveness of social media, users and

companies alike need more insight rather than mere “hits” to

be returned from search operations. Users need a way to form

queries that not only return a list of lexical hits, but that also

return some additional metadata that directly addresses the

user‟s “informational need”. An example of this trend can be

seen in simple weather queries. A search query like “Weather

San Francisco” today returns a widget showing the current

temperature and weather predictions for the day followed by

the top-n weather related websites (from which the widget

data may have been populated). This is in contrast with prior

search engine designs where only the top-n weather related

websites were provided without any direct answer addressing

the informational need of the user. In general, this type of

functionality is provided for queries on weather, recent events

(political, financial and sports-related), and famous people.

Indeed, advances have been made towards a richer user

interface for search results by exploiting metadata extracted

from result-set documents [1].

Yet, one particular kind of informational need that has been

overlooked by modern search engines is “sentiment”. For

example, let us consider that we want to understand “What is

likely to happen to US stock prices in the next few months

given subsequent applications of Quantitative Easing by the

US Federal Reserve?” Note that the question is a real-world

Manuscript received February 10, 2015; revised June 2, 2015. This work

is part of patent US-14/032,587

The authors are with Oracle Text, USA (e-mail: shubhro.roy@oracle.com,

alexandra.czarlinska@oracle.com, asha.tarachandani@oracle.com).

question and is factual in nature, yet it entails an element of

opinion since no one can fully predict the future. How would

we address this informational need today using web search

engines?

In one approach, we could issue the query “predictions for

stock prices”. This will return a list of related web sites or

articles gathered from a variety of online sources. We will

then have to skim through the summaries returned for each

result to see if the context is relevant. For example, some

results might be discussing predictions based on factors that

do not include “Quantitative Easing”, but we are really

interested in this relationship. We can keep adding more

keywords to the query to constraint it further. This may result

in too much constraint and not return any relevant results.

However, assuming that we have obtained a relevant result set,

we now have to post-process the hitlist documents to

determine what the prediction actually is (stock prices will go

up, will go down or will stay the same). It would be really

useful if the search engine performed this analysis for us when

returning the results. Even modern search engines do not

provide such a mechanism for users to explicitly indicate that

they want to extract sentiment/opinion in addition to receiving

the raw “lexical hit” search results. The needs of such users

are acute enough that often painstaking and largely manual

efforts are undertaken in order to extract sentiment scores

from lexical hit results. Worse, often the user‟s informational

need is ultimately satisfied from mined results that derive

from terms, concepts or entities that are not present within the

keywords specified in the query.

In this paper we present a framework for addressing this

issue of specifying and processing sentiment related

informational need in search engines. The framework is

implemented as part of the Oracle Text product, which is an

in-database information retrieval system [2].

II. RELATED WORK

Sentiment Analysis of documents is a growing field that has

seen a lot of research in the recent years. Previous work

particularly relevant to our task falls naturally into two groups.

The first is related to techniques for sentiment classification

of natural language texts at document and topic level. The

second relates to automatic extraction of sentiment metadata

in information retrieval systems.

A. Sentiment Classification Techniques

Approaches for sentiment classification can broadly be

divided into machine learning based approaches and lexicon

based approaches. Pang et al. [3] compared Naïve Bayes,

Maximum Entropy and Support Vector Machines (SVM)

Framework for Sentiment Aware Queries and Results in

Search Using Oracle Text

Shubhro Jyoti Roy, Alexandra Czarlinska, and Asha Tarachandani

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

83DOI: 10.7763/IJKE.2015.V1.15

using combinations of unigrams, bigrams and part of speech

tags etc. as features. Their work concluded that the best

performance in terms of precision-recall is achieved by SVM

using unigram features. Manning and Wang further compared

Naïve Bayes and SVMs and concluded that Naïve Bayes

outperforms SVMs for short snippets of text whereas SVMs

are better for longer reviews [4]. On the other hand Turney‟s

work explored an unsupervised approach where he extracted

adjectives and adverbs from text and calculated sentiment

score based on Pointwise Mutual Information (PMI) using

predefined seed-words [5]. Other unsupervised approaches

have used sentiment lexicons to extract opinion bearing words

and compute their relative strengths [6], [7].

Fig. 1. System Architecture.

Most of the above mentioned work though, has focused on

calculating sentiment score for the entire document. However,

it is often the case that a single document has multiple subjects

and the author‟s sentiment towards each one is markedly

different. Bing Liu shows in his work that product reviews

contain different sentiments associated with different product

features [8]-[10]. Hovy and Kim‟s work involves extracting

opinion bearing words from a predefined sentiment region

around a specified topic and then aggregating the score for the

individual words to compute the overall sentiment related to

the topic [11]. Nasukawa et al. also use similar approach to

extract sentiment scores for a given topic and then use NLP

techniques to associate the extracted sentiment to the topic

[12].We draw on these approaches to extract sentiment scores

for the user-specified topic of interest.

B. Application in Information Retrieval Systems

In the Information Retrieval domain, there has been limited

work on sentiment analysis of search results. Chelaru et al.

[13] employed a lexicon based approach for identifying

sentiment associated with web-search queries. Pera et al. [14]

used a multiclass-SVM based approach to extract the user‟s

informational need from the query in order to generate

summaries tailored to the identified informational need. The

informational need is expressed in terms of products, facets

and sentiment terms identified in the user‟s query. Our work

differs from this approach as the framework provides a

mechanism for the user to directly specify that sentiment

analysis is being requested for a specified topic or entity. This

is critical for companies and agencies such as marketing and

government that want to analyze the sentiment for specific

entities.

In the past, work has been done on enriching search

interfaces with additional metadata such as locations, person

names, dates etc. [1]. Demartini and Siersdorfer also discuss

an approach for extracting document-level sentiment

metadata from search results to study diversity of opinion

across different search engines [15]. Our work provides a

mechanism for specifying sentiment-based informational

needs via sentiment aware queries to generate

Query Processor Document Retrieval Engine

Inverted Index

Sentiment-Aware Results

Sentiment Aware Query

Lexical Terms Sentiment Topic

Sentiment Engine

Sentiment

Lexicon

Model Generation Subsystem

Training Sets

Classifiers

Trained

Models

Default

Classifier

Preprocessor

Snippet Extractor

Entity Extractor

Analyzer

Feature Extractor

Classification Engine

Postprocessor

Sentiment Filter

Sentiment Aggregator

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

84

sentiment-aware results from result-set documents returned

by the main query.

III. BACKGROUND ON ORACLE TEXT

Oracle Text is Oracle‟s integrated full-text retrieval

technology available in Standard and Enterprise Editions.

Oracle Text provides PL/SQL APIs to allow the user to index,

search, and analyze text and documents stored in the Oracle

database, in files, and on the Web. Oracle Text can perform

linguistic analysis of documents and search text using a

variety of strategies including keyword search, contextual

queries, boolean operations, pattern matching, mixed

thematic queries, HTML/XML section searching and more.

The search results can be rendered in various formats

including unformatted text, HTML with term highlighting,

and original document format. Oracle Text also supports

multiple languages and uses advanced relevance-ranking

technology to improve search quality [2]. The framework

described in this paper is built on the existing information

retrieval framework of Oracle Text.

IV. THE PROPOSED FRAMEWORK

Fig. 1 gives an architectural overview of the proposed

framework. The Document Retrieval Engine subsystem is not

further discussed in this paper. It is assumed to be a standard

information retrieval engine that processes the user‟s query by

looking up the inverted index to get posting-lists of

non-stopword tokens present in the query. It then uses the

docid and offset information in the posting-list to process any

query operators present in the query and accordingly return a

ranked hitlist of documents that are the best possible match to

the user‟s query. The following sections further explain the

other components of this framework.

A. Sentiment Aware Queries

Document-level sentiment scores fail to detect individual

sentiments directed towards different subjects or topics in the

document [12]. Rarely does a document contain opinion

regarding just one subject, and even then, the opinion of the

author may vary largely across the entire document. It is often

this topic- specific sentiment information that the user is most

interested in. For example, consider the below segments from

a single camera review for Nikon:

1) The Nikon S3 has proven to be a good buy. It is

affordable yet has great picture quality.

2) I hate the Lens Cap!!! There, I said it. It's probably just

one of those small annoyances that keep frustrating you.

3) I think LX2 is probably one of the best, most innovative

cameras on the market today, but it is too expensive.

As we can see from the above excerpts, a single review can

have multiple sentiments. When we classified the entire

review the document got a sentiment score of +69 (on a scale

of -100 to 100) showing it as a positive review about Nikon S3

camera. But we do see that the user has some negative

sentiment associated with the Lens Cap. Also the positive

sentiment in the third excerpt is actually about a different

camera, which may have boosted the sentiment score of the

entire document.

Now consider that the user want to understand “What is the

feedback on the picture quality and lens of the new Nikon S3

camera?” Specifically, the user wants the camera reviews for

“Nikon S3” but the sentiment information requested is related

to the “picture quality” and the “lens”. There is no way to

identify this directly. Using an automated query analyzer like

Pera et al. [14] in this case, may incorrectly identify the

sentiment topic as “Nikon S3” and return sentiment scores

related to it rather than the “picture quality”. Hence it is

important in such use-cases to enable the user to provide this

information directly to the search engine so that appropriate

sentiment metadata can be provided as a part of the search

results. Sentiment Aware Queries provide the user with this

mechanism to specify a lexical query based on which the

documents will be retrieved and a sentiment query based on

which the sentiment information will be processed. Fig. 2

shows a sample sentiment-aware query that can be used to

express the above specified informational need.

ctx_query.result_set(‘idx’,`Camera AND

Nikon S3 AND SA(Nikon)=POS’,’

<ctx_result_set_descriptor>

<hitlist order="SCORE DESC">

<sentiment classifier=”camera”>

<item topic=”picture quality”/>

<item topic=”ABOUT(Lens)”

radius=200/>

</sentiment>

</hitlist>

<group SA=”picture quality”>

</ctx_result_set_descriptor>

', :rs);

Query Element Description

ctx_result_set_

descriptor

Describes the user query being submitted. This

is the top-level query element.

hitlist Specifies that the top hits for the query should

be returned

sentiment Indicates that sentiment information related to

the search results should be returned.

item Specifies topic for which sentiment

information should be returned.

group Specifies group counts should be returned.

Fig. 2. Sentiment-aware query.

The query on the inverted index „idx‟ is specified using the

existing Oracle Text ResultSet Interface

(ctx_result_set_descriptor element), which is an XML based

query specification framework [2]. The new sentiment

element (bolded) enables the user to specify that 1) sentiment

information is being requested 2) topics or entities for which

sentiment information should be extracted. For example, the

search query used above for document retrieval is “Camera

AND Nikon S3” and the sentiment topics are “picture quality”

and “lens”. Using the ABOUT operator for the term “lens” the

user specifies that synonyms and stemmed versions of the

term should also be used to extract sentiment information.

The sentiment element also takes an attribute “classifier”,

which can be optionally used to provide a specially trained

model for sentiment prediction. If the classifier is not

specified, the sentiment engine uses the default classifier.

This shall be discussed in more detail in the next section. In

addition to specifying a sentiment topic, the framework also

enables the user to specify post-filtering options related to

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

85

sentiment information such as group-counts and filters. In Fig.

2, the phrase “SA (Nikon) =POS” in the main query indicates

that only those documents for which the sentiment score for

“Nikon” is positive will be returned. The element “<group

SA=‟picture quality‟>” indicates that group counts for

sentiment (positive and negative) will also be returned for the

topic specified. The Query Processor parses this XML query

to extract the different query terms and options specified by

the user and accordingly directs the Document Retrieval

Engine and the Sentiment Engine.

B. Sentiment Engine

The sentiment engine provides the core sentiment

processing functionality at query time. The input to the system

includes the sentiment topic extracted from the

sentiment-aware query by the query parser as well as the

documents retrieved by the Document Retrieval Engine for

the main search query provided by the user. These documents

are further processed by the Sentiment Engine to extract

sentiment metadata. Finally the sentiment engine also uses the

existing Inverted-Index for snippet generation and feature

extraction.

1) Preprocessor

Procedure ExtractSnippets(docid_list, topic,

radius)

begin

for each docid in docid_list

{

 while (docid contains more topic-offsets)

 {

 toff = getoffset(docid, topic);

 start_off = toff - radius;

 end_off = toff + radius;

 AdjustBoundary(start_off, end_off);

 Add (start_off,end_off) to snippet_list

 }

 Sort snippet_list by start_off;

 for each snippet si in snippet_list

 {

 if (si.end_off > si+1.start_off)

 merge si and si+1

 }

}

end;

Procedure AdjustBoundary(stoff, eoff)

begin

while (gettoken(stoff) <> EOS && stoff>0)

 stoff--;

while (gettoken(eoff) <> EOS &&

gettoken(eoff)<>EOF)

 eoff++;

end;

EOS: End of Sentence token

EOF: End of File token

Fig. 3. Snippet extraction.

As discussed in Section II, the sentiment related to a

particular topic / entity is dictated by opinion bearing terms

present in the text surrounding the topic [3]. In [11] we also

see that in terms of accuracy, a region of text works better than

just the sentence containing the topic, for sentiment prediction.

Hence, the preprocessor extracts text segments called

“snippets”, surrounding the topic terms specified by the user,

from the documents returned by the Document Retrieval

Engine. For this purpose the snippet extractor performs

inverted index lookup to check if the document contains the

topic keywords and if so it calculates the snippet start and end

offsets based on the snippet radius and sentence boundaries.

As shown in Fig. 2, the snippet radius is a parameter that the

user can control do dictate how much of text surrounding a

given topic term should be analyzed for sentiment processing.

If this parameter is not specified we use a default value that

has shown best performance in terms of accuracy on

experiment datasets. The extractor also respects sentence

boundaries i.e. the start and end offsets of the snippet are

selected such that sentences are not chopped off in the middle.

This ensures all informative sentiment bearing terms are

included in the extracted snippet. The snippet extraction

algorithm shown in Fig. 3 is computationally inexpensive as it

has access to pre-computed offset information stored in the

inverted index. This avoids the cost of actually parsing the

document to extract snippets.

If a sentiment topic is not specified by the user we use a

Named Entity Extractor to identify frequently occurring

entities in the result-set documents and then extract snippets

for those entities. Finally the extracted snippets are processed

by the Sentiment Analyzer to generate sentiment scores for

each snippet.

2) Analyzer

The sentiment analyzer is responsible for generating

prediction scores for the snippets. If the user already specified

a model to be used for sentiment prediction, the feature

extractor transforms the extracted snippet into a feature vector

of tf-idf scores for all non-stopword unigram tokens present in

the snippet. This information can be directly computed using

token-frequency information stored in the inverted index.

Once the feature vectors are generated, the user-specified

SVM model is used to generate probabilistic scores for both

positive and negative sentiment categories. The raw

probability scores are then used to generate a normalized

sentiment score for the snippet, ranging for +100 to -100,

indicating the degree of positivity / negativity. If the user does

not specify a model, the framework uses the default classifier

to compute sentiment scores.

3) Model generation subsystem

Sentiment polarities, intuitively, are dependent on domains

/ topics. As discussed in [5], the word “unpredictable” in a

phrase like “unpredictable steering” in an automobile review

indicates negative connotation while the same word in the

phrase “unpredictable plot” in a movie review has positive

orientation. Hence a supervised model trained on movie

reviews data will not perform well for documents related to

automobile reviews or financial reviews. The model

generation sub-system enables the user to train domain

specific models using pre-labeled training data, which can

then be used during the sentiment query processing phase.

The user can train multiple such models and specify the one to

be used at query time using the sentiment-aware query syntax

shown in Fig. 2.

For our purpose we select Support Vector Machines (SVM)

to build the domain-specific models as it has been shown to

have the best performance in terms of precision-recall for

sentiment analysis using unigram features [3]. Since the size

of the snippet can vary based on the radius value provided at

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

86

query time, we cannot use Naïve Bayes as it has been shown

to have good performance only for very short segments of text

[4]. The in-database SVM implementation used here is part of

the Oracle Data Mining Product [16]. It uses an Active

Learning approach to speedup convergence and hence model

training time. The algorithm uses a small sample set of

randomly selected data points from the training-data to create

an initial model and then incrementally refines the decision

hyperplane using the rest of the data until the model

converges or the maximum allowed number of support

vectors is reached. It also uses a computationally inexpensive,

data-driven approach to estimates Complexity Factor and

Epsilon values that result in a model with competitive

accuracy and supports rapid convergence [17]. As a result the

user does not have to specify these SVM parameters at

training time. Using the model generation API, the user just

needs to specify the database tables containing the training

data and associated training-labels along with the

model-name. The framework also takes care of stratified

sampling and cross-validation during training phase and

stores the resulting model in the database itself. This abstracts

away complexities related to training an SVM model making

it more accessible to users lacking data mining expertise.

Please refer to the Appendix A for an example of model

generation.

4) Default classifier

If the user did not specify a model to be used for sentiment

prediction we used a lexicon based approach for sentiment

scoring. Previous work on unsupervised sentiment

classification has shown that adjectives and adverbs are good

indicators of sentiment (Hatzivassiloglou, 1997, 2000 [18],

[19], Turney 2002 [5]). It has also been shown that adjectives

present around a given topic are indicative of sentiment

related to the particular topic [11], [20]. Hence we first use a

Part of Speech (POS) tagger to identify adjectives present in

the snippet. We then extract the semantic score for the

identified adjectives using SentiWordNet (Esuli and

Sebastiani, 2005 [21]), which is a WordNet [22] based

sentiment lexicon. These individual scores for the adjectives

are then aggregated to compute the score for the entire snippet.

Now let‟s consider the snippet below:

“The Picture Quality is Very Good. Yes, it does take some

time getting used to, but once you familiarize yourself with

everything this camera is capable of, you can achieve

spectacular results”

As we can see the phrase “very good” closest to the topic

“picture quality” defines the sentiment related to it. Other

sentiment- bearing terms like “spectacular” actually refer to

the camera in general and not just the picture quality. Hence

we hypothesize that adjectives closest to the topic phrase have

greater probability of bearing sentiment information related to

the topic than those further away from it. This is also in

agreement with the rationale behind extracting text segments

surrounding the topic terms. To incorporate this factor into

the aggregate sentiment score we weight the score of the

individual adjectives by the distance of the adjective from the

topic as shown in Equation 1.

Here dist(adj, topic) is simply the absolute difference of the

token offset of the adjective and the topic fetched from the

inverted index. SWN(adj) is the score returned by

SentiWordNet for that adjective and „n‟ is the number of

adjectives in the snippet. The above approach shows

performance comparable to the pre-trained supervised models,

in terms of accuracy.

5) Postprocessor

Finally the extracted snippets and the calculated sentiment

scores for those snippets are passed to the postprocessor. This

component of the framework is responsible for generating the

sentiment-aware results based on the computation performed

in the previous steps. If the user query had specified any

filtering criteria based on sentiment, such as return only those

results that have positive sentiment related to the topic, then

such processing is performed at this stage by the Sentiment

Filter. If the user requested for document-level sentiment

scores for the topic, the post-processor aggregates the snippet

level scores for the topic across the entire document. Finally if

sentiment group counts are requested, then the number of

positive and negative documents for the specified topic is

computed from the hitlist document returned by the main

query, using the document level aggregate scores.

C. Sentiment Aware Results

<ctx_result_set>

<hitlist>

<hit>

<sentiment>

 <item topic="picture quality">

<segment>

 I was actually quite impressed with

it. Powerful zoom, sharp lens,

decent picture quality. I

also played with some other

Panasonic models in various stores

just to get a better feel.

</segment>

 <score>67</score>

<segment>

Picture Quality is Very Good.

Yes, it does take some time getting

used to, but once you familiarize

yourself with everything this is a

great camera.

</segment>

<score>88</score>

</item>

</sentiment>

</hit>

 …

</hitlist>

<groups SA=”picture quality”>

<group value=”positive”>

<count> 17 </count>

</group>

<group value=”negative”>

<count> 4</count>

</group>

</groups>

</ctx_result_set>
Fig. 4. Sentiment-aware result.

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

87

1 ()
()

(,)adj snippet

SWN adj
score snippet

n dist adj topic 
 

(1)

The sentiment-aware results generated in response to the

user query are in XML format which can be easily consumed

by any front-end application to appropriately display the

results. Fig. 4 shows a sample response generated by the

framework for the sentiment-aware query in Fig. 2.
The hitlist element contains the “hits” for the main query

submitted by the user. Since sentiment results were also

requested, each hit contains a “sentiment” element which

further contains the text segments extracted from that hit for

the given topic and the corresponding sentiment score. In Fig.

4 we have just shown 2 of the 21 hits returned. The result also

has a “groups” element which has the group counts for

positive and negative sentiment related to “picture quality”.

V. EXPERIMENTAL EVALUATION

In order to assess how well the framework meets the

sentiment-related informational needs of the user,

experiments were performed based on 3 criteria: a) overall

document-level accuracy of sentiment models, b) runtime

performance of the sentiment queries c) quality of results

returned by the sentiment queries. For this purpose we first

describe the datasets used for this evaluation and the

traditional approach based system used for comparative

analysis. We then discuss the performance of the framework

described in Section IV based on the above specified

evaluation criteria.

A. Dataset

We have used two distinctly different datasets for

evaluation. The movie reviews dataset consist of 1000

positive and 1000 negative movie reviews from IMDB first

used by Bo Pang and Lillian Lee, 2004 [23]. The reviews in

this dataset are significantly long. This is good for analyzing

how document level sentiment can differ from snippet level

sentiment related to a particular topic, as multiple distinct

snippets can be extracted from each review. The other dataset

used contains 1000 positive and 1000 negative camera

reviews from Amazon Product Reviews dataset [24]. The

reviews in this dataset are much smaller as compared to the

movie reviews dataset, often containing only a few sentences.

The performance on this dataset is a good indicator of how the

algorithm will perform on short segments of text.

B. Traditional Approach

We discussed earlier that sentiment-aware search enables

us to embed the sentiment processing within the document

retrieval framework itself, which results in better performance

and more accurate response to user‟s informational need. This

is as opposed to the traditional approach where the search

query returns a set of hitlist documents which are then parsed

and post-processed to extract sentiment information external

to the information retrieval system. Here we compare the

proposed framework to a similar traditional approach in terms

of processing time and quality of results. For this purpose we

built a PL/SQL based external system which accepts a search

query and a sentiment query. It then uses Oracle Text to fetch

the hitlist documents for the search query and the sentiment

topic and finally uses the same pre-trained SVM models used

by the framework to predict the document level sentiment

scores. Note that scores in this approach are computed for the

whole document and not at the topic level.

C. Document Level Accuracy

For validating document level performance of the

supervised models (SVM) we trained the model on 800 movie

reviews (400 positive and 400 negative) and then submitted

sentiment queries on the remaining 200 reviews (100 positive

100 negative) requesting document level sentiment scores. A

similar process was repeated for the camera reviews dataset.

From the performance results in Table I, we can see that the

accuracy does fall a bit in the case of camera reviews, as the

reviews themselves are very small (only a couple of sentences

in some cases). Hence a few misleading phrases using

negative words to express positive sentiment or using sarcasm

could lead to incorrect prediction. This is consistent with the

findings of Wang and Manning, 2012 [4].

For the unsupervised model no training was required. To

test this model we indexed the same 200 camera review

documents on which the supervised model was tested and

submitted sentiment queries without specifying a classifier.

Hence the framework uses the default SentiWordNet based

classifier to generate the sentiment scores. As we can see from

Table I, the unsupervised approach shows comparable

performance to the supervised SVM-based model, which was

specifically trained on camera reviews. We also note that

currently the unsupervised approach simply aggregates the

scores of adjectives extracted from the text segment. Hence in

case of phrases like “the lens is not so good”, the adjective

“good” will still contribute a positive semantic orientation

score to the overall sentiment score. To handle such cases we

would also need to look at adverbs, which may boost or invert

the sense of the adjective. We also do not handle sentiment

inversion based on keywords like “but”, “yet” etc. as can be

seen in the below review:

“First I tried the 28-135 IS-pretty good. But I wasn't totally

happy so returned it and ordered the 24-105 L."

The above review is actually negative but positive

adjectives like “good” and “happy” would result in a positive

sentiment score. Yet the model serves the purpose of

providing decent out-of-the-box performance in the case

where the user does not specify a domain-specific model.

Adding more linguistic based approaches, similar to [25],

would definitely improve performance in terms of accuracy

but may have significant impact on query runtime. Finally we

note that it was not possible to compare model accuracy at the

snippet level as true labels are not available for the snippets

(they are generated by the framework).

D. Runtime Performance of Sentiment Queries

Fig. 5 shows the query runtime for sentiment aware queries

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

88

TABLE I: CLASSIFIER PERFORMANCE

Supervised -

Movie Reviews

Supervised -

Camera Reviews

Unsupervised -

Camera Reviews

Precision 74.07% 87.25% 78.48%

Recall 87.76% 76.02% 63.93%

Accuracy 78.65% 75.61% 73.33%

using the framework for both the Movie Reviews and Camera

Reviews datasets. In both cases we see an almost linear

increase in time with an increase in the number of sentiment

topics processed. In the case of movie reviews the processing

time is slightly higher since those reviews are much longer

compared to the camera reviews. As a result the number of

snippets extracted and analyzed per document is much higher

than in the case of movie reviews.

Fig. 5. Framework query performance.

Furthermore, in the case of camera reviews the driving

search query returns 3257 documents whereas for the movie

reviews the driving query returns only 15253 documents

which also contributes to this difference in query time.

Nevertheless in both cases the framework is able to process up

to 6 sentiment topics under 0.5 seconds.

No. of sentiment

topics 1 2 3 4 5 6

Framework

(Time in sec) 0.03 0.07 0.09 0.11 0.14 0.17

Traditional

(Time in sec) 8.38 14.1 23.75 33.14 44.39 69.6

Fig. 6. Traditional vs. framework – Runtime comparison.

Next we compare the camera review query processing time

to the traditional approach. Fig. 6 shows the query runtime for

the traditional approach using the PL/SQL based API

discussed earlier. As we can see, the framework based queries

are orders of magnitude faster than the traditional approach.

This is mainly because in the traditional approach we first

need to fetch the documents for the search query and then

re-parse the hitlist documents to extract relevant features.

Then the SVM model is used to generate sentiment scores.

The framework approach also has direct access to offset and

frequency information of keywords from the inverted index

which aids in fast computation of feature vectors. Hence we

see that processing the sentiment information as part of the

document retrieval framework leads to better query

performance.

E. Quality of Results

The main aim of the framework is to directly address the

user‟s informational need in terms of sentiment information.

Here we have compared the topic level sentiment scores

returned by the framework and the document level sentiment

scores computed using the PL/SQL based traditional

approach.

TABLE II: FRAMEWORK SCORE (FS) VS. TRADITIONAL SCORE (TS)

Topic Snippet FS TS Outcome

script the script is simply a silly and

unresolved story, which is

artificially stretched into a

three hour long motion picture

-65 68 Much

Better

Brad

Pitt

the other outstanding perf is

given by none other than brad

pitt , the main actor the

movie's popularity may hang

upon , at least initially

88 68 Better

Lens Why buy an expensive camera

and then use a cheap lens like

this? It‟s silly to spend big

money on the camera and

have only blurry pictures to

show from it.

-75 77 Much

Better

Lens The lighting must be almost

PERFECT. The lens does not

respond well to artificial

lighting.

64* -58 Worse

*See Future Work for improvements

As seen in Table II, the document level sentiment score

may not always agree with the sentiment associated with the

topic of interest for the user. The first two snippets in the table

are from the same document with an overall sentiment score

of 68 indicating a positive orientation. But if the user was

actually interested in sentiment related to the “script” of the

movie, the document level score would actually be misleading

as the author expresses negative sentiment towards the script.

On the other hand the review speaks highly of “Brad Pitt”. But

this is not very evident from the document level score as it is

also influenced by other negative sentiments present in the

document, such as the sentiment towards the script. A similar

trend can be observed in the third example as well. Hence we

see that without knowledge of the sentiment topic (“script” or

“brad pitt”), it is difficult to appropriately address the user‟s

informational need using document level sentiment

information. Using automated approaches to extract the

informational need from the query, similar to [14], may also

fail to identify the correct sentiment topic in this scenario, as

user queries can have multiple entities. But the user may not

be necessarily interested in sentiment related to all the entities

present in the query.

The last example in the table shows a negative case, where

analyzing the text segment around the specified topic actually

leads to incorrect sentiment scores. The presence of a positive

word “perfect” close to the topic term “lens” results in a

positive score for the topic when actually the reviewer‟s

sentiment is negative towards the lens. The word “perfect”

refers to the “lighting” and not the “lens”. In such cases, using

subject-sentiment relationship analysis as in [12] can be

helpful.

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

89

VI. CONCLUSION

Traditional query systems do not provide a way to express

sentiment aware informational need. This is because they do

not distinguish between user-supplied keywords used for

document retrieval and those used to perform sentiment

analysis. Yet this distinction is critical to satisfy many

real-world analysis needs as shown in this paper. To address

this issue, we presented an integrated framework which

implements sentiment analysis on search results directly in the

Information Retrieval engine at a snippet-level rather than on

a document-level. Uniquely, this system allows the user to

specify both query terms and separate sentiment terms,

rendering the query a Sentiment-Aware query. This

specification allows the engine to more efficiently and

accurately analyze the sentiment request while retrieving the

search hits. Furthermore, the framework gives the user control

of how the results are aggregated by sentiment via

Sentiment-Aware results. It also provides the flexibility to

train multiple domain-specific models and to select the most

appropriate one at query time. Based on the experimental

results of a real-world Information Retrieval engine, we see

how Sentiment-Aware queries and Results enable the user to

accurately express the true informational need. We also

observe that embedding the sentiment processing engine

within the information retrieval system leads to great

advantages in terms of query performance.

VII. FUTURE WORK

Here we discuss some enhancements that can be made to

the existing framework to improve ease-of-use and query

performance. The current implementation requires the user to

specify which sentiment model should be used at query time.

This is often not very intuitive for the user. Instead we could

use an automated approach where the model is selected based

on the topic or domain identified from the query or hitlist

documents returned by the query. This can be achieved by

using topic models similar to those discussed by Xing Yi and

James Allen, 2009 [26]. In case the topic model is unable to

identify a topic from the query results or if no trained model is

found that matches the identified topic/domain, we can always

fallback to the unsupervised model. We could also use a

voting mechanism based ensemble approach, using all

existing domain models, to score document of unknown

domain. Such approaches have been shown to have better

accuracy as compared to standalone SVM models [27]. The

only caveat here is that such approaches are often

computationally very expensive and hence may not be

suitable for use during query processing.

The SentiWordNet based default classifier could also be

replaced by a PMI based scoring mechanism as shown by

Turney [28]. This approach would be specifically well suited

for our framework as the PMI scores could be directly

calculated using the existing inverted index. This would also

ensure that the keyword sentiment scores are revenant to the

domain of the document since the PMI scores are calculated

based on the indexed documents.

We have also seen that sentiment expressed in the text

surrounding the topic terms may not always be directed to that

topic. This can often lead to false positives. Hence we intend

to explore better ways to associate the extracted sentiment

score to the topic specified by the user [12]. Finally as

discussed in [29], adverb-adjective combinations work better

than just adjectives for lexicon based sentiment scoring

approaches. Hence this is also a possible enhancement that we

are looking at currently.

Fig. 7 shows an example of how the framework can be used

to train domain specific models prior to query time.

create index docx on training_set(docs)

indextype is ctxsys.context;

exec

ctx_cls.sa_train_model(‘my_classifier’,

‘docx’, ‘id’, ‘train_category’, ‘doc_id’,

‘cat_id’);

Fig. 7. Model training.

In the first step the user needs to create a standard inverted

index on the training set document which can then be used to

extract features. In the second step the user calls the training

API with appropriate parameters to generate the Sentiment

Model. Table III explains the parameters specified in the

example. Once the model is created it can be used at query

time using sentiment-aware queries.

TABLE III: PARAMETER DESCRIPTIONS

Parameter Description

my_classifier Name of the Model

docx Name of the index created on the

training set documents.

Id Name of the primary key of

training_set table

train_category Mapping table containing true

labels for the training data

doc_id Name of Foreign Key on

train_category table

cat_id Name of column in train_category

table containing true labels.

ACKNOWLEDGMENT

We wish to thank Roger Ford, who is the Product Manager

for the Oracle Text product for his contributions. We would

also like to thank Zhen Liu for his help in conceptualizing the

framework.

REFERENCES

[1] P. Mika, “Microsearch: An interface for semantic search,” presented at

the Workshop on Semantic Search Sem Search, 2008.

[2] Oracle text: An oracle technical white paper. [Online]. Available:

http://www.oracle.com/technetwork/database/enterprise-edition/11gor

acletexttwp-133192.pdf

[3] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment

classification using machine learning techniques,” in Proc. the 2002

ACL EMNLP Conf., 2002, pp. 79–86.

[4] S. Wang and C. Manning, “Baselines and bigrams: Simple, good

sentiment and topic classification,” in Proc. the 50th Annual Meeting

of the Association for Computational Linguistics, pp. 90–94, 2012.

[5] P. D. Turney, “Thumbs up or thumbs down? Semantic orientation

applied to unsupervised classification of reviews,” in Proc. the 40th

ACL Conf., pp. 417–424, 2002.

[6] N. Godbole, M. Srinivasaiah, and S. Skiena, “Large-scale sentiment

analysis of news and blogs,” presented at the International Conference

on Weblogs and Social Media, 2007.

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

90

APPENDIX

[7] J. M. Wiebe, “Learning subjective adjectives from corpora,” presented

at the 17th AAAI Conf., 2000.

[8] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in

Proc. the 10th ACM SIGKDD Conf., pp. 168-177, 2004.

[9] L. Zhang and B. Liu, “Identifying noun product features that imply

opinions,” in Proc. the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pp.

575-580, 2011.

[10] M. Hu and B. Liu, “Mining opinion features in customer reviews,” in

Proc. the 19th National Conference on Artificial Intelligence, pp.

755-760, 2004.

[11] S. Kim and E. Hovy, “Determining the sentiment of opinions,” in Proc

the 20th COLING Conf., pp. 1367-1373, 2006.

[12] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack, “Sentiment analyzer:

Extracting sentiments about a given topic using natural language

processing techniques,” in Proc. the 3rd IEEE Conf. on Data Mining

(ICDM'03), pp. 423-434, 2003.

[13] S. Chelaru, I. Altingovde, S. Siersdorfer, and W. Nejdl, “Analyzing,

detecting and exploiting sentiment in web queries,” ACM Transactions

on the Web Journal, vol. 8, no. 1, 2013.

[14] M. Pera, R. Qumsiyeh, and Y. Ng, “A query-based multi-document

sentiment summarizer,” in Proc the 20th ACM-CIKM Conf., pp.

1071-1076, 2011.

[15] G. Demartini and S. Siersdorfer, “Dear search engine: What‟S your

opinion about...? Sentiment analysis for semantic enrichment of web

search results,” presented at the SEMSEARCH Conf., 2010.

[16] Oracle data mining 11g release 2: Competing on in-database analytics.

[Online]. Available:

http://www.oracle.com/technetwork/database/options/advanced-analy

tics/odm/twp-data-mining-11gr2-160025.pdf

[17] B. Milenova, J. Yarmus, and M. Campos, “SVM in oracle database

10g: Removing the barriers to widespread adoption of support vector

machines,” in Proc. the 31st VLDB Conf., pp. 1152-1163, 2005.

[18] V. Hatzivassiloglou and K. R. McKeown, “Predicting the semantic

orientation of adjectives,” in Proc. the 35th ACL Conf., pp. 174–181,

1997.

[19] V. Hatzivassiloglou and J. Wiebe, “Effects of adjective orientation and

gradability on sentence subjectivity,” in Proc the 18th Conference on

Computational Linguistics, pp. 299-305, 2000.

[20] A. Popescu and O. Etzioni, “Extracting product features and opinions

from reviews,” in Proc. the Human Language Technology and

Empirical Methods in Natural Language Processing (HLT’05) Conf.,

pp. 339-346, 2005.

[21] S. Baccianella, A. Esuli, and F. Sebastiani, “SentiWordNet 3.0: An

enhanced lexical resource for sentiment analysis and opinion mining,”

in Proc. the 7th LREC Conf., pp. 2200-2204, 2010.

[22] G. A. Miller, “WordNet: A lexical database for English,”

Communications of the ACM, vol. 38, no. 11, pp. 39-41, 1995.

[23] B. Pang and L. Lee, “A sentimental education: Sentiment analysis

using subjectivity summarization based on minimum cuts,” in Proc.

the 42nd ACL Conf., pp. 271-278, 2004.

[24] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood,

boomboxes and blenders: Domain adaptation for sentiment

classification,” in Proc. the 45th Annual Meeting of the Association

for Computational Linguistics, pp. 440–447, 2007.

[25] K. Dave, S. Lawrence, and D. M. Pennock, “Mining the peanut gallery:

Opinion extraction and semantic classification of product reviews,”

presented at the 12th Int.WWW Conf., 2003.

[26] X. Yi and J. Allan, “A comparative study of utilizing topic models for

information retrieval,” in Proc. the 31th European Conference on IR

Research on Advances in Information Retrieval, pp. 29-41, 2009.

[27] M. Whitehead and L. Yaeger, “Sentiment mining using ensemble

classification models,” in Proc. the Int’l Conf. on Systems, Computing

Sciences and Software Engineering (CISSE), pp. 509–514, 2010.

[28] P. D. Turney, “Mining the web for synonyms: PMI-IR versus LSA on

TOEFL,” in Proc. the 12th European Conference on Machine

Learning, pp. 491-502, 2001.

[29] F. Benamara, C. Cesarano, A. Picariello, D. Reforgiato, and V. S.

Subrahmanian, “Sentiment analysis: Adjectives and adverbs are better

than adjectives alone,” presented at the Int‟l Conf. on Web Logs and

Social Media, 2007.

Shubhro Jyoti Roy was born in Kolkata, India. He has completed his master

in information systems from Carnegie Mellon University in 2013, and the

bachelor in computer engineering from University of Pune, India in 2009. He

is currently a senior software engineer at Oracle in Redwood Shores,

California where he is part of the Oracle Text team within the Database

Server Technologies Group. Previously he also worked as a subject matter

expert (SME) for Amdocs Development Center India as a part of the

Business Intelligence Data-Warehousing (BID) team. His prior research

interest, while at Carnegie Mellon, was application of machine learning

techniques for analyzing multivariate time-series data to predicting critical

health conditions in patients. Currently, his primary research focus is

towards application of machine learning in information retrieval systems to

enhance quality of search results.

Alexandra Czarlinska was born in Warsaw, Poland. She received her Ph.D.

from the Wireless Communications Group (WCL) in the Department of

Electrical and Computer Engineering at Texas A&M University in 2008 and

the B.A.Sc. degree in engineering science in 2002 from the University Of

Toronto, ON, Canada. She is currently a primary member of Technical Staff

(SMTS) at Oracle in Redwood Shores, California where she works on the

Oracle Text in-database search engine. Previously she worked as a software

developer for Open Text, Waterloo, Canada in the area of search engine

design for enterprise content management where she patented a novel

method of managing the capacity of index partitions. Her prior research

focus was in the area of probabilistic modeling of wireless sensor and

actuator networks and on applications of game theory to engineering systems

leading to more than a dozen publications in journals and conferences. Her

current focus is on improving the analytic capabilities of information

retrieval systems such as through integrated sentiment analysis of the results.

While at Texas A&M University, Dr. Czarlinska was a member of the IEEE

and a student coordinator of the National Science Foundation's Research

Experience for Undergraduates program in Electrical Engineering. While at

the University of Toronto, she was the recipient of the National Scholarship

Award.

Asha Tarachandani was born in New Delhi, India. She has obtained a

master in computer science from UC-Berkeley in 2002, and the bachelor of

technology in computer science and engineering from IIT Kanpur in 2000.

She is currently a senior development Manager AT Oracle in Redwood

Shores, California. Previously she has worked at Oracle as a software

engineer for Oracle XML Database. Her expertise is in database techniques

for semi-structured and unstructured text, including information retrieval,

text analysis, document stores, XQuery, and JSON. She has received 14

patents and a Best Paper Award for DBKDA 2011 for her work at Oracle.

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

91

