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Abstract—Users today need to express their informational 

need in a way such that the search results can be further 

analyzed to directly address the need, instead of merely 

returning a list of lexical hits. In this paper we address the 

problem of extracting sentiment metadata related to the user’s 

topic or entity of interest along with the search results. We 

propose a framework that provides the flexibility of specifying a 

sentiment related informational need associated with a 

particular topic of interest, along with the standard keyword 

query. This information is then used to extract sentiment scores 

for the expressed entity of interest based on the “hitlist” of most 

relevant documents returned by the main search query. Our 

experimental results based on product and movie review 

datasets, demonstrate the advantages of embedding the 

sentiment processing within the search engine framework. 

 

Index Terms—Sentiment analysis, information retrieval, 

query framework, text analytics, sentiment aware search.  

 

I. INTRODUCTION 

In the age of exabytes of instantly accessible online data 

and given the pervasiveness of social media, users and 

companies alike need more insight rather than mere “hits” to 

be returned from search operations. Users need a way to form 

queries that not only return a list of lexical hits, but that also 

return some additional metadata that directly addresses the 

user‟s “informational need”. An example of this trend can be 

seen in simple weather queries. A search query like “Weather 

San Francisco” today returns a widget showing the current 

temperature and weather predictions for the day followed by 

the top-n weather related websites (from which the widget 

data may have been populated). This is in contrast with prior 

search engine designs where only the top-n weather related 

websites were provided without any direct answer addressing 

the informational need of the user. In general, this type of 

functionality is provided for queries on weather, recent events 

(political, financial and sports-related), and famous people. 

Indeed, advances have been made towards a richer user 

interface for search results by exploiting metadata extracted 

from result-set documents [1]. 

Yet, one particular kind of informational need that has been 

overlooked by modern search engines is “sentiment”. For 

example, let us consider that we want to understand “What is 

likely to happen to US stock prices in the next few months 

given subsequent applications of Quantitative Easing by the 

US Federal Reserve?” Note that the question is a real-world 
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question and is factual in nature, yet it entails an element of 

opinion since no one can fully predict the future. How would 

we address this informational need today using web search 

engines?  

In one approach, we could issue the query “predictions for 

stock prices”. This will return a list of related web sites or 

articles gathered from a variety of online sources. We will 

then have to skim through the summaries returned for each 

result to see if the context is relevant. For example, some 

results might be discussing predictions based on factors that 

do not include “Quantitative Easing”, but we are really 

interested in this relationship. We can keep adding more 

keywords to the query to constraint it further. This may result 

in too much constraint and not return any relevant results. 

However, assuming that we have obtained a relevant result set, 

we now have to post-process the hitlist documents to 

determine what the prediction actually is (stock prices will go 

up, will go down or will stay the same). It would be really 

useful if the search engine performed this analysis for us when 

returning the results. Even modern search engines do not 

provide such a mechanism for users to explicitly indicate that 

they want to extract sentiment/opinion in addition to receiving 

the raw “lexical hit” search results. The needs of such users 

are acute enough that often painstaking and largely manual 

efforts are undertaken in order to extract sentiment scores 

from lexical hit results. Worse, often the user‟s informational 

need is ultimately satisfied from mined results that derive 

from terms, concepts or entities that are not present within the 

keywords specified in the query. 

In this paper we present a framework for addressing this 

issue of specifying and processing sentiment related 

informational need in search engines. The framework is 

implemented as part of the Oracle Text product, which is an 

in-database information retrieval system [2]. 

 

II. RELATED WORK 

Sentiment Analysis of documents is a growing field that has 

seen a lot of research in the recent years. Previous work 

particularly relevant to our task falls naturally into two groups. 

The first is related to techniques for sentiment classification 

of natural language texts at document and topic level. The 

second relates to automatic extraction of sentiment metadata 

in information retrieval systems. 

A. Sentiment Classification Techniques 

Approaches for sentiment classification can broadly be 

divided into machine learning based approaches and lexicon 

based approaches. Pang et al. [3] compared Naïve Bayes, 

Maximum Entropy and Support Vector Machines (SVM) 
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using combinations of unigrams, bigrams and part of speech 

tags etc. as features. Their work concluded that the best 

performance in terms of precision-recall is achieved by SVM 

using unigram features. Manning and Wang further compared 

Naïve Bayes and SVMs and concluded that Naïve Bayes 

outperforms SVMs for short snippets of text whereas SVMs 

are better for longer reviews [4]. On the other hand Turney‟s 

work explored an unsupervised approach where he extracted 

adjectives and adverbs from text and calculated sentiment 

score based on Pointwise Mutual Information (PMI) using 

predefined seed-words [5]. Other unsupervised approaches 

have used sentiment lexicons to extract opinion bearing words 

and compute their relative strengths [6], [7].  

 

 
Fig. 1. System Architecture. 

 

Most of the above mentioned work though, has focused on 

calculating sentiment score for the entire document. However, 

it is often the case that a single document has multiple subjects 

and the author‟s sentiment towards each one is markedly 

different. Bing Liu shows in his work that product reviews 

contain different sentiments associated with different product 

features [8]-[10]. Hovy and Kim‟s work involves extracting 

opinion bearing words from a predefined sentiment region 

around a specified topic and then aggregating the score for the 

individual words to compute the overall sentiment related to 

the topic [11]. Nasukawa et al. also use similar approach to 

extract sentiment scores for a given topic and then use NLP 

techniques to associate the extracted sentiment to the topic 

[12].We draw on these approaches to extract sentiment scores 

for the user-specified topic of interest. 

B. Application in Information Retrieval Systems 

In the Information Retrieval domain, there has been limited 

work on sentiment analysis of search results. Chelaru et al. 

[13] employed a lexicon based approach for identifying 

sentiment associated with web-search queries. Pera et al. [14] 

used a multiclass-SVM based approach to extract the user‟s 

informational need from the query in order to generate 

summaries tailored to the identified informational need. The 

informational need is expressed in terms of products, facets 

and sentiment terms identified in the user‟s query. Our work 

differs from this approach as the framework provides a 

mechanism for the user to directly specify that sentiment 

analysis is being requested for a specified topic or entity. This 

is critical for companies and agencies such as marketing and 

government that want to analyze the sentiment for specific 

entities. 

In the past, work has been done on enriching search 

interfaces with additional metadata such as locations, person 

names, dates etc. [1]. Demartini and Siersdorfer also discuss 

an approach for extracting document-level sentiment 

metadata from search results to study diversity of opinion 

across different search engines [15]. Our work provides a 

mechanism for specifying sentiment-based informational 

needs via sentiment aware queries to generate 
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sentiment-aware results from result-set documents returned 

by the main query. 

 

III. BACKGROUND ON ORACLE TEXT 

Oracle Text is Oracle‟s integrated full-text retrieval 

technology available in Standard and Enterprise Editions. 

Oracle Text provides PL/SQL APIs to allow the user to index, 

search, and analyze text and documents stored in the Oracle 

database, in files, and on the Web. Oracle Text can perform 

linguistic analysis of documents and search text using a 

variety of strategies including keyword search, contextual 

queries, boolean operations, pattern matching, mixed 

thematic queries, HTML/XML section searching and more. 

The search results can be rendered in various formats 

including unformatted text, HTML with term highlighting, 

and original document format. Oracle Text also supports 

multiple languages and uses advanced relevance-ranking 

technology to improve search quality [2]. The framework 

described in this paper is built on the existing information 

retrieval framework of Oracle Text. 

 

IV. THE PROPOSED FRAMEWORK 

Fig. 1 gives an architectural overview of the proposed 

framework. The Document Retrieval Engine subsystem is not 

further discussed in this paper. It is assumed to be a standard 

information retrieval engine that processes the user‟s query by 

looking up the inverted index to get posting-lists of 

non-stopword tokens present in the query. It then uses the 

docid and offset information in the posting-list to process any 

query operators present in the query and accordingly return a 

ranked hitlist of documents that are the best possible match to 

the user‟s query. The following sections further explain the 

other components of this framework. 

A. Sentiment Aware Queries 

Document-level sentiment scores fail to detect individual 

sentiments directed towards different subjects or topics in the 

document [12]. Rarely does a document contain opinion 

regarding just one subject, and even then, the opinion of the 

author may vary largely across the entire document. It is often 

this topic- specific sentiment information that the user is most 

interested in. For example, consider the below segments from 

a single camera review for Nikon: 

1) The Nikon S3 has proven to be a good buy. It is 

affordable yet has great picture quality. 

2) I hate the Lens Cap!!! There, I said it. It's probably just 

one of those small annoyances that keep frustrating you. 

3) I think LX2 is probably one of the best, most innovative 

cameras on the market today, but it is too expensive. 

As we can see from the above excerpts, a single review can 

have multiple sentiments. When we classified the entire 

review the document got a sentiment score of +69 (on a scale 

of -100 to 100) showing it as a positive review about Nikon S3 

camera. But we do see that the user has some negative 

sentiment associated with the Lens Cap. Also the positive 

sentiment in the third excerpt is actually about a different 

camera, which may have boosted the sentiment score of the 

entire document.  

Now consider that the user want to understand “What is the 

feedback on the picture quality and lens of the new Nikon S3 

camera?” Specifically, the user wants the camera reviews for 

“Nikon S3” but the sentiment information requested is related 

to the “picture quality” and the “lens”. There is no way to 

identify this directly. Using an automated query analyzer like 

Pera et al. [14] in this case, may incorrectly identify the 

sentiment topic as “Nikon S3” and return sentiment scores 

related to it rather than the “picture quality”. Hence it is 

important in such use-cases to enable the user to provide this 

information directly to the search engine so that appropriate 

sentiment metadata can be provided as a part of the search 

results. Sentiment Aware Queries provide the user with this 

mechanism to specify a lexical query based on which the 

documents will be retrieved and a sentiment query based on 

which the sentiment information will be processed. Fig. 2 

shows a sample sentiment-aware query that can be used to 

express the above specified informational need. 

ctx_query.result_set(‘idx’,`Camera AND 

Nikon S3 AND SA(Nikon)=POS’,’  

<ctx_result_set_descriptor>  

<hitlist order="SCORE DESC"> 

<sentiment classifier=”camera”> 

<item topic=”picture quality”/> 

<item topic=”ABOUT(Lens)” 

radius=200/> 

</sentiment> 

</hitlist> 

<group SA=”picture quality”> 

</ctx_result_set_descriptor> 

', :rs);  

 

Query Element Description 

ctx_result_set_ 

descriptor 

Describes the user query being submitted. This 

is the top-level query element. 

hitlist Specifies that the top hits for the query should 

be returned 

sentiment Indicates that sentiment information related to 

the search results should be returned. 

item Specifies topic for which sentiment 

information should be returned. 

group Specifies group counts should be returned. 

Fig. 2. Sentiment-aware query. 

 

The query on the inverted index „idx‟ is specified using the 

existing Oracle Text ResultSet Interface 

(ctx_result_set_descriptor element), which is an XML based 

query specification framework [2]. The new sentiment 

element (bolded) enables the user to specify that 1) sentiment 

information is being requested 2) topics or entities for which 

sentiment information should be extracted. For example, the 

search query used above for document retrieval is “Camera 

AND Nikon S3” and the sentiment topics are “picture quality” 

and “lens”. Using the ABOUT operator for the term “lens” the 

user specifies that synonyms and stemmed versions of the 

term should also be used to extract sentiment information. 

The sentiment element also takes an attribute “classifier”, 

which can be optionally used to provide a specially trained 

model for sentiment prediction. If the classifier is not 

specified, the sentiment engine uses the default classifier. 

This shall be discussed in more detail in the next section. In 

addition to specifying a sentiment topic, the framework also 

enables the user to specify post-filtering options related to 

International Journal of Knowledge Engineering, Vol. 1, No. 2, September 2015

85



  

sentiment information such as group-counts and filters. In Fig. 

2, the phrase “SA (Nikon) =POS” in the main query indicates 

that only those documents for which the sentiment score for 

“Nikon” is positive will be returned. The element “<group 

SA=‟picture quality‟>” indicates that group counts for 

sentiment (positive and negative) will also be returned for the 

topic specified. The Query Processor parses this XML query 

to extract the different query terms and options specified by 

the user and accordingly directs the Document Retrieval 

Engine and the Sentiment Engine. 

B. Sentiment Engine 

The sentiment engine provides the core sentiment 

processing functionality at query time. The input to the system 

includes the sentiment topic extracted from the 

sentiment-aware query by the query parser as well as the 

documents retrieved by the Document Retrieval Engine for 

the main search query provided by the user. These documents 

are further processed by the Sentiment Engine to extract 

sentiment metadata. Finally the sentiment engine also uses the 

existing Inverted-Index for snippet generation and feature 

extraction. 

1) Preprocessor 

 

Procedure ExtractSnippets(docid_list, topic, 

radius) 

begin 

for each docid in docid_list 

{ 

 while (docid contains more topic-offsets) 

 {  

  toff = getoffset(docid, topic); 

  start_off = toff - radius; 

  end_off = toff + radius; 

  AdjustBoundary(start_off, end_off); 

  Add (start_off,end_off) to snippet_list   

 } 

 Sort snippet_list by start_off; 

 for each snippet si in snippet_list 

  { 

   if (si.end_off > si+1.start_off) 

     merge si and si+1 

  } 

} 

end; 

 

Procedure AdjustBoundary(stoff, eoff) 

begin 

while (gettoken(stoff) <> EOS && stoff>0) 

 stoff--; 

while (gettoken(eoff) <> EOS && 

gettoken(eoff)<>EOF) 

 eoff++; 

end;  

EOS: End of Sentence token 

EOF: End of File token 

Fig. 3. Snippet extraction. 

 

As discussed in Section II, the sentiment related to a 

particular topic / entity is dictated by opinion bearing terms 

present in the text surrounding the topic [3]. In [11] we also 

see that in terms of accuracy, a region of text works better than 

just the sentence containing the topic, for sentiment prediction. 

Hence, the preprocessor extracts text segments called 

“snippets”, surrounding the topic terms specified by the user, 

from the documents returned by the Document Retrieval 

Engine. For this purpose the snippet extractor performs 

inverted index lookup to check if the document contains the 

topic keywords and if so it calculates the snippet start and end 

offsets based on the snippet radius and sentence boundaries. 

As shown in Fig. 2, the snippet radius is a parameter that the 

user can control do dictate how much of text surrounding a 

given topic term should be analyzed for sentiment processing. 

If this parameter is not specified we use a default value that 

has shown best performance in terms of accuracy on 

experiment datasets. The extractor also respects sentence 

boundaries i.e. the start and end offsets of the snippet are 

selected such that sentences are not chopped off in the middle. 

This ensures all informative sentiment bearing terms are 

included in the extracted snippet. The snippet extraction 

algorithm shown in Fig. 3 is computationally inexpensive as it 

has access to pre-computed offset information stored in the 

inverted index. This avoids the cost of actually parsing the 

document to extract snippets. 

If a sentiment topic is not specified by the user we use a 

Named Entity Extractor to identify frequently occurring 

entities in the result-set documents and then extract snippets 

for those entities. Finally the extracted snippets are processed 

by the Sentiment Analyzer to generate sentiment scores for 

each snippet. 

2) Analyzer 

The sentiment analyzer is responsible for generating 

prediction scores for the snippets. If the user already specified 

a model to be used for sentiment prediction, the feature 

extractor transforms the extracted snippet into a feature vector 

of tf-idf scores for all non-stopword unigram tokens present in 

the snippet. This information can be directly computed using 

token-frequency information stored in the inverted index. 

Once the feature vectors are generated, the user-specified 

SVM model is used to generate probabilistic scores for both 

positive and negative sentiment categories. The raw 

probability scores are then used to generate a normalized 

sentiment score for the snippet, ranging for +100 to -100, 

indicating the degree of positivity / negativity. If the user does 

not specify a model, the framework uses the default classifier 

to compute sentiment scores. 

3) Model generation subsystem 

Sentiment polarities, intuitively, are dependent on domains 

/ topics. As discussed in [5], the word “unpredictable” in a 

phrase like “unpredictable steering” in an automobile review 

indicates negative connotation while the same word in the 

phrase “unpredictable plot” in a movie review has positive 

orientation. Hence a supervised model trained on movie 

reviews data will not perform well for documents related to 

automobile reviews or financial reviews. The model 

generation sub-system enables the user to train domain 

specific models using pre-labeled training data, which can 

then be used during the sentiment query processing phase. 

The user can train multiple such models and specify the one to 

be used at query time using the sentiment-aware query syntax 

shown in Fig. 2.  

For our purpose we select Support Vector Machines (SVM) 

to build the domain-specific models as it has been shown to 

have the best performance in terms of precision-recall for 

sentiment analysis using unigram features [3]. Since the size 

of the snippet can vary based on the radius value provided at 
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query time, we cannot use Naïve Bayes as it has been shown 

to have good performance only for very short segments of text 

[4]. The in-database SVM implementation used here is part of 

the Oracle Data Mining Product [16]. It uses an Active 

Learning approach to speedup convergence and hence model 

training time. The algorithm uses a small sample set of 

randomly selected data points from the training-data to create 

an initial model and then incrementally refines the decision 

hyperplane using the rest of the data until the model 

converges or the maximum allowed number of support 

vectors is reached. It also uses a computationally inexpensive, 

data-driven approach to estimates Complexity Factor and 

Epsilon values that result in a model with competitive 

accuracy and supports rapid convergence [17]. As a result the 

user does not have to specify these SVM parameters at 

training time. Using the model generation API, the user just 

needs to specify the database tables containing the training 

data and associated training-labels along with the 

model-name. The framework also takes care of stratified 

sampling and cross-validation during training phase and 

stores the resulting model in the database itself. This abstracts 

away complexities related to training an SVM model making 

it more accessible to users lacking data mining expertise. 

Please refer to the Appendix A for an example of model 

generation. 

4) Default classifier 

If the user did not specify a model to be used for sentiment 

prediction we used a lexicon based approach for sentiment 

scoring. Previous work on unsupervised sentiment 

classification has shown that adjectives and adverbs are good 

indicators of sentiment (Hatzivassiloglou, 1997, 2000 [18], 

[19], Turney 2002 [5]). It has also been shown that adjectives 

present around a given topic are indicative of sentiment 

related to the particular topic [11], [20]. Hence we first use a 

Part of Speech (POS) tagger to identify adjectives present in 

the snippet. We then extract the semantic score for the 

identified adjectives using SentiWordNet (Esuli and 

Sebastiani, 2005 [21]), which is a WordNet [22] based 

sentiment lexicon. These individual scores for the adjectives 

are then aggregated to compute the score for the entire snippet. 

Now let‟s consider the snippet below: 

 

“The Picture Quality is Very Good. Yes, it does take some 

time getting used to, but once you familiarize yourself with 

everything this camera is capable of, you can achieve 

spectacular results” 

 

As we can see the phrase “very good” closest to the topic 

“picture quality” defines the sentiment related to it. Other 

sentiment- bearing terms like “spectacular” actually refer to 

the camera in general and not just the picture quality. Hence 

we hypothesize that adjectives closest to the topic phrase have 

greater probability of bearing sentiment information related to 

the topic than those further away from it. This is also in 

agreement with the rationale behind extracting text segments 

surrounding the topic terms. To incorporate this factor into 

the aggregate sentiment score we weight the score of the 

individual adjectives by the distance of the adjective from the 

topic as shown in Equation 1.  

 

Here dist(adj, topic) is simply the absolute difference of the 

token offset of the adjective and the topic fetched from the 

inverted index. SWN(adj) is the score returned by 

SentiWordNet for that adjective and „n‟ is the number of 

adjectives in the snippet. The above approach shows 

performance comparable to the pre-trained supervised models, 

in terms of accuracy. 

5) Postprocessor 

Finally the extracted snippets and the calculated sentiment 

scores for those snippets are passed to the postprocessor. This 

component of the framework is responsible for generating the 

sentiment-aware results based on the computation performed 

in the previous steps. If the user query had specified any 

filtering criteria based on sentiment, such as return only those 

results that have positive sentiment related to the topic, then 

such processing is performed at this stage by the Sentiment 

Filter. If the user requested for document-level sentiment 

scores for the topic, the post-processor aggregates the snippet 

level scores for the topic across the entire document. Finally if 

sentiment group counts are requested, then the number of 

positive and negative documents for the specified topic is 

computed from the hitlist document returned by the main 

query, using the document level aggregate scores. 

C. Sentiment Aware Results 

 

<ctx_result_set>  

<hitlist> 

<hit>  

<sentiment> 

 <item topic="picture quality"> 

<segment> 

 I was actually quite impressed with 

it. Powerful zoom, sharp lens, 

decent <b>picture quality</b>. I 

also played with some other 

Panasonic models in various stores 

just to get a better feel. 

</segment> 

 <score>67</score> 

<segment>  

<b>Picture Quality</b> is Very Good. 

Yes, it does take some time getting 

used to, but once you familiarize 

yourself with everything this is a 

great camera. 

</segment> 

<score>88</score> 

</item> 

</sentiment> 

</hit> 

 …       

</hitlist> 

<groups SA=”picture quality”> 

<group value=”positive”> 

<count> 17 </count> 

</group> 

<group value=”negative”> 

<count> 4</count> 

</group> 

</groups> 

</ctx_result_set> 
Fig. 4. Sentiment-aware result. 
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The sentiment-aware results generated in response to the 

user query are in XML format which can be easily consumed 

by any front-end application to appropriately display the 

results. Fig. 4 shows a sample response generated by the 

framework for the sentiment-aware query in Fig. 2.  
The hitlist element contains the “hits” for the main query 

submitted by the user. Since sentiment results were also 

requested, each hit contains a “sentiment” element which 

further contains the text segments extracted from that hit for 

the given topic and the corresponding sentiment score. In Fig. 

4 we have just shown 2 of the 21 hits returned. The result also 

has a “groups” element which has the group counts for 

positive and negative sentiment related to “picture quality”. 

 

V. EXPERIMENTAL EVALUATION 

In order to assess how well the framework meets the 

sentiment-related informational needs of the user, 

experiments were performed based on 3 criteria: a) overall 

document-level accuracy of sentiment models, b) runtime 

performance of the sentiment queries c) quality of results 

returned by the sentiment queries. For this purpose we first 

describe the datasets used for this evaluation and the 

traditional approach based system used for comparative 

analysis. We then discuss the performance of the framework 

described in Section IV based on the above specified 

evaluation criteria.  

A. Dataset 

We have used two distinctly different datasets for 

evaluation. The movie reviews dataset consist of 1000 

positive and 1000 negative movie reviews from IMDB first 

used by Bo Pang and Lillian Lee, 2004 [23]. The reviews in 

this dataset are significantly long. This is good for analyzing 

how document level sentiment can differ from snippet level 

sentiment related to a particular topic, as multiple distinct 

snippets can be extracted from each review. The other dataset 

used contains 1000 positive and 1000 negative camera 

reviews from Amazon Product Reviews dataset [24]. The 

reviews in this dataset are much smaller as compared to the 

movie reviews dataset, often containing only a few sentences. 

The performance on this dataset is a good indicator of how the 

algorithm will perform on short segments of text. 

B. Traditional Approach  

We discussed earlier that sentiment-aware search enables 

us to embed the sentiment processing within the document 

retrieval framework itself, which results in better performance 

and more accurate response to user‟s informational need. This 

is as opposed to the traditional approach where the search 

query returns a set of hitlist documents which are then parsed 

and post-processed to extract sentiment information external 

to the information retrieval system. Here we compare the 

proposed framework to a similar traditional approach in terms 

of processing time and quality of results. For this purpose we 

built a PL/SQL based external system which accepts a search 

query and a sentiment query. It then uses Oracle Text to fetch 

the hitlist documents for the search query and the sentiment 

topic and finally uses the same pre-trained SVM models used 

by the framework to predict the document level sentiment 

scores. Note that scores in this approach are computed for the 

whole document and not at the topic level. 

C. Document Level Accuracy 

For validating document level performance of the 

supervised models (SVM) we trained the model on 800 movie 

reviews (400 positive and 400 negative) and then submitted 

sentiment queries on the remaining 200 reviews (100 positive 

100 negative) requesting document level sentiment scores. A 

similar process was repeated for the camera reviews dataset. 
 

   

 

 

From the performance results in Table I, we can see that the 

accuracy does fall a bit in the case of camera reviews, as the 

reviews themselves are very small (only a couple of sentences 

in some cases). Hence a few misleading phrases using 

negative words to express positive sentiment or using sarcasm 

could lead to incorrect prediction. This is consistent with the 

findings of Wang and Manning, 2012 [4].  

For the unsupervised model no training was required. To 

test this model we indexed the same 200 camera review 

documents on which the supervised model was tested and 

submitted sentiment queries without specifying a classifier. 

Hence the framework uses the default SentiWordNet based 

classifier to generate the sentiment scores. As we can see from 

Table I, the unsupervised approach shows comparable 

performance to the supervised SVM-based model, which was 

specifically trained on camera reviews. We also note that 

currently the unsupervised approach simply aggregates the 

scores of adjectives extracted from the text segment. Hence in 

case of phrases like “the lens is not so good”, the adjective 

“good” will still contribute a positive semantic orientation 

score to the overall sentiment score. To handle such cases we 

would also need to look at adverbs, which may boost or invert 

the sense of the adjective. We also do not handle sentiment 

inversion based on keywords like “but”, “yet” etc. as can be 

seen in the below review: 

 

“First I tried the 28-135 IS-pretty good. But I wasn't totally 

happy so returned it and ordered the 24-105 L."  

 

The above review is actually negative but positive 

adjectives like “good” and “happy” would result in a positive 

sentiment score. Yet the model serves the purpose of 

providing decent out-of-the-box performance in the case 

where the user does not specify a domain-specific model. 

Adding more linguistic based approaches, similar to [25], 

would definitely improve performance in terms of accuracy 

but may have significant impact on query runtime. Finally we 

note that it was not possible to compare model accuracy at the 

snippet level as true labels are not available for the snippets 

(they are generated by the framework). 

D. Runtime Performance of Sentiment Queries  

Fig. 5 shows the query runtime for sentiment aware queries 
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TABLE I: CLASSIFIER PERFORMANCE

Supervised -

Movie Reviews

Supervised -

Camera Reviews

Unsupervised -

Camera Reviews

Precision 74.07% 87.25% 78.48%

Recall 87.76% 76.02% 63.93%

Accuracy 78.65% 75.61% 73.33%



  

using the framework for both the Movie Reviews and Camera 

Reviews datasets. In both cases we see an almost linear 

increase in time with an increase in the number of sentiment 

topics processed. In the case of movie reviews the processing 

time is slightly higher since those reviews are much longer 

compared to the camera reviews. As a result the number of 

snippets extracted and analyzed per document is much higher 

than in the case of movie reviews. 
 

 
Fig. 5. Framework query performance. 

 

Furthermore, in the case of camera reviews the driving 

search query returns 3257 documents whereas for the movie 

reviews the driving query returns only 15253 documents 

which also contributes to this difference in query time.  

Nevertheless in both cases the framework is able to process up 

to 6 sentiment topics under 0.5 seconds. 
 

 
No. of sentiment  

topics 1 2 3 4 5 6 

Framework 

(Time in sec) 0.03 0.07 0.09 0.11 0.14 0.17 

Traditional  

(Time in sec) 8.38 14.1 23.75 33.14 44.39 69.6 

Fig. 6. Traditional vs. framework – Runtime comparison. 

 

Next we compare the camera review query processing time 

to the traditional approach. Fig. 6 shows the query runtime for 

the traditional approach using the PL/SQL based API 

discussed earlier. As we can see, the framework based queries 

are orders of magnitude faster than the traditional approach. 

This is mainly because in the traditional approach we first 

need to fetch the documents for the search query and then 

re-parse the hitlist documents to extract relevant features. 

Then the SVM model is used to generate sentiment scores. 

The framework approach also has direct access to offset and 

frequency information of keywords from the inverted index 

which aids in fast computation of feature vectors. Hence we 

see that processing the sentiment information as part of the 

document retrieval framework leads to better query 

performance. 

E. Quality of Results 

The main aim of the framework is to directly address the 

user‟s informational need in terms of sentiment information. 

Here we have compared the topic level sentiment scores 

returned by the framework and the document level sentiment 

scores computed using the PL/SQL based traditional 

approach. 
 

TABLE II: FRAMEWORK SCORE (FS) VS. TRADITIONAL SCORE (TS) 

Topic Snippet FS TS Outcome 

script the script is simply a silly and 

unresolved story, which is 

artificially stretched into a 

three hour long motion picture  

-65 68 Much 

Better 

Brad 

Pitt 

the other outstanding perf is 

given by none other than brad 

pitt , the main actor the 

movie's popularity may hang 

upon , at least initially 

88 68 Better 

Lens Why buy an expensive camera 

and then use a cheap lens like 

this? It‟s silly to spend big 

money on the camera and 

have only blurry pictures to 

show from it. 

-75 77 Much 

Better 

Lens The lighting must be almost 

PERFECT. The lens does not 

respond well to artificial 

lighting. 

64* -58 Worse 

*See Future Work for improvements 

 

As seen in Table II, the document level sentiment score 

may not always agree with the sentiment associated with the 

topic of interest for the user. The first two snippets in the table 

are from the same document with an overall sentiment score 

of 68 indicating a positive orientation. But if the user was 

actually interested in sentiment related to the “script” of the 

movie, the document level score would actually be misleading 

as the author expresses negative sentiment towards the script. 

On the other hand the review speaks highly of “Brad Pitt”. But 

this is not very evident from the document level score as it is 

also influenced by other negative sentiments present in the 

document, such as the sentiment towards the script. A similar 

trend can be observed in the third example as well. Hence we 

see that without knowledge of the sentiment topic (“script” or 

“brad pitt”), it is difficult to appropriately address the user‟s 

informational need using document level sentiment 

information. Using automated approaches to extract the 

informational need from the query, similar to [14], may also 

fail to identify the correct sentiment topic in this scenario, as 

user queries can have multiple entities. But the user may not 

be necessarily interested in sentiment related to all the entities 

present in the query.  

The last example in the table shows a negative case, where 

analyzing the text segment around the specified topic actually 

leads to incorrect sentiment scores. The presence of a positive 

word “perfect” close to the topic term “lens” results in a 

positive score for the topic when actually the reviewer‟s 

sentiment is negative towards the lens. The word “perfect” 

refers to the “lighting” and not the “lens”. In such cases, using 

subject-sentiment relationship analysis as in [12] can be 

helpful. 
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VI. CONCLUSION 

Traditional query systems do not provide a way to express 

sentiment aware informational need. This is because they do 

not distinguish between user-supplied keywords used for 

document retrieval and those used to perform sentiment 

analysis. Yet this distinction is critical to satisfy many 

real-world analysis needs as shown in this paper. To address 

this issue, we presented an integrated framework which 

implements sentiment analysis on search results directly in the 

Information Retrieval engine at a snippet-level rather than on 

a document-level.  Uniquely, this system allows the user to 

specify both query terms and separate sentiment terms, 

rendering the query a Sentiment-Aware query. This 

specification allows the engine to more efficiently and 

accurately analyze the sentiment request while retrieving the 

search hits. Furthermore, the framework gives the user control 

of how the results are aggregated by sentiment via 

Sentiment-Aware results. It also provides the flexibility to 

train multiple domain-specific models and to select the most 

appropriate one at query time. Based on the experimental 

results of a real-world Information Retrieval engine, we see 

how Sentiment-Aware queries and Results enable the user to 

accurately express the true informational need. We also 

observe that embedding the sentiment processing engine 

within the information retrieval system leads to great 

advantages in terms of query performance. 

 

VII. FUTURE WORK 

Here we discuss some enhancements that can be made to 

the existing framework to improve ease-of-use and query 

performance. The current implementation requires the user to 

specify which sentiment model should be used at query time. 

This is often not very intuitive for the user. Instead we could 

use an automated approach where the model is selected based 

on the topic or domain identified from the query or hitlist 

documents returned by the query. This can be achieved by 

using topic models similar to those discussed by Xing Yi and 

James Allen, 2009 [26]. In case the topic model is unable to 

identify a topic from the query results or if no trained model is 

found that matches the identified topic/domain, we can always 

fallback to the unsupervised model. We could also use a 

voting mechanism based ensemble approach, using all 

existing domain models, to score document of unknown 

domain. Such approaches have been shown to have better 

accuracy as compared to standalone SVM models [27]. The 

only caveat here is that such approaches are often 

computationally very expensive and hence may not be 

suitable for use during query processing.  

The SentiWordNet based default classifier could also be 

replaced by a PMI based scoring mechanism as shown by 

Turney [28]. This approach would be specifically well suited 

for our framework as the PMI scores could be directly 

calculated using the existing inverted index. This would also 

ensure that the keyword sentiment scores are revenant to the 

domain of the document since the PMI scores are calculated 

based on the indexed documents. 

We have also seen that sentiment expressed in the text 

surrounding the topic terms may not always be directed to that 

topic. This can often lead to false positives. Hence we intend 

to explore better ways to associate the extracted sentiment 

score to the topic specified by the user [12]. Finally as 

discussed in [29], adverb-adjective combinations work better 

than just adjectives for lexicon based sentiment scoring 

approaches. Hence this is also a possible enhancement that we 

are looking at currently. 

 

Fig. 7 shows an example of how the framework can be used 

to train domain specific models prior to query time. 
 

create index docx on training_set(docs) 

indextype is ctxsys.context; 

exec 

ctx_cls.sa_train_model( ‘my_classifier’, 

‘docx’, ‘id’, ‘train_category’, ‘doc_id’, 

‘cat_id’); 

Fig. 7. Model training. 

 

In the first step the user needs to create a standard inverted 

index on the training set document which can then be used to 

extract features. In the second step the user calls the training 

API with appropriate parameters to generate the Sentiment 

Model. Table III explains the parameters specified in the 

example. Once the model is created it can be used at query 

time using sentiment-aware queries. 
 

TABLE III: PARAMETER DESCRIPTIONS 

Parameter Description 

my_classifier Name of the Model 

docx Name of the index created on the 

training set documents. 

Id Name of the primary key of 

training_set table 

train_category Mapping table containing true 

labels for the training data 

doc_id Name of Foreign Key on 

train_category table 

cat_id Name of column in train_category 

table containing true labels. 
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