
  

  

Abstract—Model pruning is an important technique in 

real-world machine learning problems, especially in deep 

learning. This technique has provided some methods for 

compressing a large model to a smaller model while retaining 

the most accuracy. However, a majority of these approaches 

require a full original training set. This might not always be 

possible in practice if the model is trained in a large-scale 

dataset or on a dataset whose release poses privacy. Although 

we cannot access the original training set in some cases, 

pre-trained models are available more often. This paper aims to 

solve the model pruning problem without the initial training set 

by finding the sub-networks in the initial pre-trained model. We 

propose an approach of using genetic algorithms (GA) to find 

the sub-networks systematically and automatically. 

Experimental results show that our algorithm can find good 

sub-networks efficiently. Theoretically, if we had unlimited time 

and hardware power, we could find the optimized sub-networks 

of any pre-trained model and achieve the best results in the 

future. Our code and pre-trained models are available at: 

https://github.com/sun-asterisk-research/ga_pruning_research. 

 
Index Terms—Genetic algorithm - GA, model compression, 

data-free learning. 

 

I. INTRODUCTION 

A. Overview 

Most state-of-the-art deep neural networks (DNNs) are 

compute-intensive and require a lot of storage. Due to 

privacy, latency, and other issues, these computations are 

gradually moving to the edge. Network pruning is a widely 

used approach for achieving smaller models with lower 

computational costs and energy consumption of DNNs, 

therefore, they can effectively run on edge computing 

platforms. Pruned models have smaller sizes to fit in edge 

devices’ memory, such as smartphones, security cameras. 

Structured pruning can even utilize hardware capabilities for 

reducing latency of models [1]. 

Many previous works have been proposed for pruning 

deep neural networks. Based on the number of steps, existing 

methods can be divided into two categories, i.e., one-shot [2] 

and iterative [3], [4]. According to the pattern used to prune 

models, they can be divided into two categories: structured 

based models [4], [5], [6] and unstructured based models [3].  
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Most existing pruning methods require original training 

datasets for retraining [7] or fine-tuning [8]. However, due to 

privacy (e.g., face datasets) and transmission issues, training 

datasets might be unavailable. In this paper, we propose a 

method for effectively pruning DNNs without original 

training datasets using genetic algorithms. We argue that we 

always need a validation dataset to evaluate a model before 

using it. Our method exploits such small datasets for our 

proposed pruning models. Various experiments on popular 

datasets (MNIST, CIFAR10) have been conducted to show 

effectiveness and generalization. 

B. Our Contributions 

Our main contributions are: 

1) We propose a method for pruning models without 

original training datasets using the genetic algorithm. 

Therefore, we can efficiently reduce the size of DNNs in 

case of no training data. That makes our proposed 

technique can be applied to real applications, especially 

for edge computing. 

2) We introduce a novel strategy for fast and efficient 

evolving of GA. The strategy requires a much fewer 

number of generations for a similar average fitness score 

compared to the original genetic algorithm. 

3) We demonstrate that the pruned models achieved by our 

method are not overfitting on validation datasets. Also, 

based on such results, we can prove that our algorithm is 

suitable for large pruned models. 

 

II. RELATED WORKS 

A. Deep Neural Network 

1) Basic concepts 

A Deep Neural Network (DNN) is an Artificial Neural 

Network (ANN) with multiple layers between the input and 

output layers [9], [10]. There are different types of neural 

networks, however, they always consist of the same 

components: neurons, synapses, weights, biases, and 

functions. Mathematically, a deep neural network is defined 

as: 

 

where:  

 

is its parameters. These parameters are in high dimensional 

space; and the goal is to find a set of values of θ which 

maximizes the likelihood of observing some data x (a.k.a 

Maximum Likelihood Estimate). Such can be shown as 
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follows: 

 

where θ∗ is the optimal parameters in Maximum Likelihood 

Estimate settings, and  is the likelihood function. 

DNNs can model complex non-linear relationships. DNN 

architectures generate compositional models where the object 

is expressed as a layered composition of primitives. In the 

case of using DNN, a hypothesis is defined in the form of its 

network architecture. Subsequently, all that is left to do is to 

learn the parameters of that network through training. 

2) Training a DNN 

In order to train a DNN, an objective function must be 

defined to measure the accuracy of the model; and the 

training process is optimizing this function to improve the 

model’s quality as a result. The objective function can be 

defined differently depending on the problems we solve. 

Some common objective functions while training DNN such 

as cross-entropy [11] for classification problems and mean 

square error (MSE) [12] for regression problems, and so on. 

Optimizing this objective function using gradient descent 

algorithm [13] is a common practice in deep learning. The 

optimal parameters (weights) are approximated through 

iterations; in the case of minimizing a loss function L as the 

objective, the gradient descent works as follows: 

 

where η is the learning rate, and θi is the i-th element of the 

vector parameter θ. 

B. Model Pruning  

Model compression is one of the most important 

techniques in deploying neural network models to production 

level. The purpose of the method is to compress large and 

complex models into a lighter, simpler one without 

significant loss in accuracy. This technique is especially 

meaningful when deployed on low-resource edge devices. 

One of the typical model compression techniques is model 

pruning. Enormously trained model in deep learning contains 

a large amount of redundancy [14] in the form of unimportant 

weights that have little contribution to the final output. 

Pruning is a method of model compression, lightening the 

architecture by cutting off those unimportant connections, 

trading a minor loss in quality for performance [14]. Both 

original and pruned model have the same architecture, with 

the pruned model being sparser (weights with the low 

magnitude (values) being set to zeros). In essence, pruning is 

finding the binary mask for each layer in the original network. 

Each binary mask variable has the same size as the layer 

(weight) as shown in Fig. 1. The binary mask is used to 

determine which weights should be used for training the 

model. These weights can be computed by defining a pruning 

type strategy. 

  
Fig. 1. Binary mask in pruned model.  

C. Lottery Ticket Hypothesis 

DNNs usually have abundant parameters. However, not all 

of its parameters are considered useful. Frankle et al. [7] 

show that there exist sub-networks with a much fewer 

number of parameters than original networks that can still 

achieve similar test accuracy. Their method conjectures that 

for a moderate-sized network f and randomly-initialized 

parameter , there exists a sparse subnetwork f;, given 

by configuration m ∈ 0,1d, ||m||0 << d that can be trained 

from to perform comparably to trained 

versions of the original model f . 

However, we cannot start with these subnetworks since 

they give lower accuracy. Instead, a full original network is 

needed for effective training. A smaller subnetwork can be 

uncovered by applying algorithms such as model pruning. 

Retraining [7] or fine-tuning [8] might be needed to recover 

accuracy. 

D. Genetic Algorithm 

Genetic algorithms are one of the important algorithms of 

evolutionary computing. It is biologically inspired. Darwin’s 

theory of evolution states that all species of organisms arise 

and develop through natural selection, inherited variations 

that increase the individual’s ability to compete, survive, and 

reproduce. Through natural selection, the fittest individuals 

are selected, and they produce offspring. The best individuals 

will be selected to keep in the next generations. If the parents 

have higher fitness, their offspring tend to have more chances 

of survival. Genetic algorithms also learn from this idea. 

Derived from an initial population including a randomly 

initialized set of individuals. Through operations such as 

selection, crossover and mutation, the new population will be 

created after each generation. Each individual will have a 

fitness score measuring the quality of it with the current 

problem. 

This algorithm can be used to solve optimization and 

search problems. Some applications of genetic algorithms 

can be mentioned such as vehicle routing problems [15], deep 

learning hyper-parameter optimizations [16], neural network 

weight optimizations [17] [18], and so on. 

 

III. PROPOSED METHODS 

In this section, we present our model pruning method using 

genetic algorithms. We describe how solution representation, 

fitness score, initial population initialization, selection, 

genetic operators, and termination conditions in GA are 

employed in our approach. We also present our strategies for 

evolving quickly and efficiently. 

Consider a trained neural network . Let  be a 

 mask for pruning, then the pruned model will 

be . Let p be the desired model sparsity, then 

our problem becomes finding m such that the pruned model 

with  of the weights retained results in similar accuracy as 

the trained model. 

Solution representation. We use  as a score of  which 

has the same dimensions as m. The corresponding position of 

top  largest magnitude in scores is 1’s positions in m, the 

remaining are 0. In our approach, s is considered solution 

representation. This method is illustrated in Fig. 2. 
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Fig. 2. Solution representation with p=50 

 

Fitness score. In this paper, we demonstrate our method 

on small datasets. Accuracy is the main metric for these two 

datasets. So, we use choose this metric as a fitness score to 

evaluate each individual. 

Initial population initialization. The larger population 

size is, the fewer generations evolve. We set the initial 

population size (first generation) to 50 to prioritize the 

number of generations at the early stage. All individuals in 

the first generation are randomly initialized. 

Selection. Parents are selected from individuals in the 

current generation to produce offspring. Individuals with 

high fitness scores are more likely to be selected. We use 

square of fitness scores as a metric for selection to increase 

discrepancy. This way slightly speeds up evolving compared 

to using fitness scores. 

Crossover. There are three popular variants of crossover. 

They are single-point, two-point, and uniform crossover. In 

our method, single-point crossover is adopted. We first 

flatten then choose crossover points from uniform 

distribution. 

Mutation. Every gene has a small probability to be 

mutated. The mutated genes are replaced by new values 

which are uniformly distributed over . Evolving 

process begins with a mutation rate of 0.1 and decreases 

gradually as fitness scores increase. 

Termination conditions. The search space for finding 

sub-networks is huge. Genetic algorithms often terminate 

when a predefined condition meets. We end evolving process 

when the average of fitness scores is no longer increasing 

after 20 generations 

Control mutation rate. The control mutation rate is 

crucial to achieving good results. A high mutation rate tends 

to diversify possible solutions at early generations while 

destroying good solutions at final generations. We control the 

mutation rate based on the average fitness scores of the latest 

generation. In general, we decrease mutation rate as fitness 

scores increase. 

Control population size. Large population sizes also 

diversify possible solutions. However, in earlier generations, 

with a high mutation rate, large population sizes in these 

generations might cause wasting our time on inefficient 

solutions. We change population size based on the average 

fitness scores of last generations. In the final generations, it is 

harder to improve already good solutions. Increasing 

population size alleviates this issue. In general, we increase 

population size as fitness scores increase. 

Retain best solutions. We bring the top 50% best 

solutions from the previous generation to the next. This 

brings out several benefits. Firstly, it saves 50% 

computations each generation. Secondly, it restores accuracy 

of the original network with much fewer generations 

(compared to non-retained methods). We also reported 

subnetworks with higher accuracy than the original network. 

The overall workflow of our proposed method is illustrated 

in Fig. 3. 

 

Fig. 3. Overall workflow of our proposed method 
 

IV. EXPERIMENTS  

A. Models Settings 

In this section, we report different experimental results of 

our methodology. Our team conducted multiple research 

experiments on the base datasets. 

With the purpose of assessing our theory, we employ 

simple convolution neural networks in image classification 

tasks. Typical vanilla convolutional network architecture 

consists of three types of layers: convolution, pooling and 

fully connected layers. Our compact architecture is 

formulated by multiple layers, each is a stack of two 

convolution layers followed by max pooling. The output is 

then followed by three fully connected layers. These 

networks were trained from scratch and used as our reference 

networks in our experiments. They were trained with large 

batch size and optimized using stochastic gradient descent. 

We experiment pruning models on two types of layers: 

convolution and fully connected. 

B. Dataset 

To demonstrate the elaboration of our theory, we 

experiment multiple approaches on the base dataset MNIST 

[19] and CIFAR10 [20]. MNIST dataset contains 60,000 

images in the training set and 10,000 patterns in the testing 

set, each of size 28x28 pixels with 256 gray levels. 

CIFAR-10 dataset has the same amount of training and 

testing RGB images in 32x32 resolution. 

C. Training Scenarios 

In the initial experiment, we evaluated our method with a 

vanilla convolution neural network on MNIST. Same 

training pipeline also applied for the CIFAR-10 dataset with a 

more complex model. 

MNIST reached 98% on the test set while this number in 

CIFAR10 is 82%, a good enough number to examine our 

proposed hypothesis. After training the root model to optimal 
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point, we applied pruning techniques with strategies that will 

be explained in the next section. 

D. System Configuration 

Our experiments are conducted on a computer with Intel 

Core i7 9700K Turbo 4.9GHz, 32GB of RAM, GPU GeForce 

GTX 2080 Ti, and 1TB SSD hard disk. 

 

V. EXPERIMENT RESULTS 

A. Ablation Study 

In this section, we show the effects of each component in 

our methods. Mutation rate control and population size 

control are crucial in experiments. The details are shown in 

Table I and II. Comprehensive results of random pruning 

with different settings are reported in Table III and IV. The 

metric used for comparisons is average fitness scores at 

generation 250 for MNIST and 150 for CIFAR10. 

Convergence comparisons between the base strategy and our 

proposed Strategy5 are illustrated in Fig. 4 and Fig. 5. 

 
TABLE I: MUTATION RATE AND POPULATION SIZE CONTROL STRATEGIES 

ON MNIST 

Avg. fitness score Mutation rate Population size 

Initial 0.15 50 

0.8 0.1 100 

0.85 0.05 150 

0.9 0.025 300 

0.95 0.01 600 

   

TABLE II: MUTATION RATE AND POPULATION SIZE CONTROL STRATEGIES 

ON CIFAR10 

Avg. fitness score Mutation rate Population size 

Initial 0.2 30 

0.8 0.15 60 

0.85 0.1 100 

0.9 0.05 200 

0.95 0.01 300 

 

Increase discrepancy. We use weighted random choice 

for choosing parents to produce offspring. Two settings are 

demonstrated for comparison are Strategy1 and Strategy2.  
 

TABLE III: THE RESULT OF ABLATION STUDY ON MNIST (AT GENERATION 

250) 

Strategy 
Squared 

fitness 

Retain 

20% 

Retain 

50% 

Avg. 

fitness 

Best 

fitness 

Strategy1    0.9443 0.9697 

Strategy2 ✔   0.9569 0.9728 

Strategy3  ✔  0.9871 0.9905 

Strategy4   ✔ 0.9870 0.9881 

Strategy5 ✔  ✔ 0.9883 0.9900 

 
TABLE IV: THE RESULTS OF ABLATION STUDY ON CIFAR 10  

Strategy 
Squared 

fitness 

Retain 

20% 

Retain 

50% 

Avg. 

fitness 

Best 

fitness 

Strategy1    0.6383 0.6493 

Strategy2 ✔   0.6404 0.6613 

Strategy3  ✔  0.7003 0.7074 

Strategy4   ✔ 0.7114 0.7184 

Strategy5 ✔  ✔ 0.7096 0.7197 

 

Strategy1 takes fitness scores of individuals as weights. 

Strategy2 takes squared fitness scores as weights. Squared 

fitness scores increase weight discrepancy. This causes the 

better individuals to have even more chances of selection. 

Especially, at final generations, when fitness scores of 

individuals are very close to each other, using squared fitness 

scores could be a good tiebreaker. 

Retain best solutions. In the evolving process, there is no 

guarantee that the fittest individuals are selected. 

Additionally, producing an entire new population is 

computationally expensive when population size is large. For 

reducing computational cost while maintaining population 

size, we experiment retaining top 20% and 50% fittest 

individuals. These two methods both improve fitness scores. 

As shown in Table III and IV, Strategy3 and Strategy4 

achieve similar fitness scores. Strategy4 is also adopted in 

our method since it saves more computational cost.  

B. Checking Generalization 

Generalization is the model’s ability to adapt properly to 

new, previously unseen data, drawn from the same 

distribution as the one used to create the model. This is a 

crucial characteristic in model evaluation. We run 

re-evaluation of our pruned models which evolved on test set 

on both training set and testing set to check the 

generalization. 
As illustrated in Fig. 6 and Fig. 7, the better pruned 

network on test set the better accuracy on training set. In 

earlier generations, the accuracy gaps between training set 

and test set were small. These gaps increase when 

approaching the accuracy of the original trained model. At 

generation 250, accuracy of the best pruned network reaches 

accuracy of original network. After that, there are slow and 

small improvements. 

C. Results 

We successfully pruned 50% weights trained models on 

MNIST and CIFAR10 without training data. Our pruned 

models on MNIST do not compromise accuracy score. Table 

III shows the results of ablation study on MNIST at 

generation 250. In overall, applied strategies generally help 

increase the accuracy score. The score of the base pruned 

method is 0.9443 on average and reaches the peak of 0.9697. 

The highest number can be found in Stategy5 find, with the 

best score of 0.9900. 

 
Fig. 4. Convergence comparison between base strategy and Strategy5 on 

MNIST 

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

4



  

 
Fig. 5. Convergence comparison between base strategy and Strategy5 on 

CIFAR10 

 

 
Fig. 6. Evaluate best pruned networks through generations on MNIST 

 

 
Fig. 7. Evaluate best pruned networks through generations on CIFAR10 

 

VI. CONCLUSION AND FUTURE WORK 

In this work, we conducted various extensive experiments 

to show the effectiveness of genetic algorithms in achieving 

good performance of pruned networks. We conclude that 

compared to traditional fine-tuning, genetic algorithms are 

another promising approach to recover performance decrease 

due to previous pruning methods. 

The hypothesis for this experiment is based on intuition of 

train-data free pruning purposes. We are looking forward to 

extending our work in the future in terms of scale 

optimization and larger dataset. 
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