

Abstract—Model pruning is an important technique in

real-world machine learning problems, especially in deep

learning. This technique has provided some methods for

compressing a large model to a smaller model while retaining

the most accuracy. However, a majority of these approaches

require a full original training set. This might not always be

possible in practice if the model is trained in a large-scale

dataset or on a dataset whose release poses privacy. Although

we cannot access the original training set in some cases,

pre-trained models are available more often. This paper aims to

solve the model pruning problem without the initial training set

by finding the sub-networks in the initial pre-trained model. We

propose an approach of using genetic algorithms (GA) to find

the sub-networks systematically and automatically.

Experimental results show that our algorithm can find good

sub-networks efficiently. Theoretically, if we had unlimited time

and hardware power, we could find the optimized sub-networks

of any pre-trained model and achieve the best results in the

future. Our code and pre-trained models are available at:

https://github.com/sun-asterisk-research/ga_pruning_research.

Index Terms—Genetic algorithm - GA, model compression,

data-free learning.

I. INTRODUCTION

A. Overview

Most state-of-the-art deep neural networks (DNNs) are

compute-intensive and require a lot of storage. Due to

privacy, latency, and other issues, these computations are

gradually moving to the edge. Network pruning is a widely

used approach for achieving smaller models with lower

computational costs and energy consumption of DNNs,

therefore, they can effectively run on edge computing

platforms. Pruned models have smaller sizes to fit in edge

devices’ memory, such as smartphones, security cameras.

Structured pruning can even utilize hardware capabilities for

reducing latency of models [1].

Many previous works have been proposed for pruning

deep neural networks. Based on the number of steps, existing

methods can be divided into two categories, i.e., one-shot [2]

and iterative [3], [4]. According to the pattern used to prune

models, they can be divided into two categories: structured

based models [4], [5], [6] and unstructured based models [3].

1Manuscript received November 30th, 2021; revised January 7, 2022.

This work was supported in part by Sun-Asterisk Inc
Toan Pham Van, Thanh Nguyen Tung, Linh Bao Doan are with

Sun-Asterisk Inc., Vietnam (e-mail: pham.van.toan@sun-asterisk.com,

nguyen.tung.thanh@sun-asterisk.com, doan.bao.linh@sun-asterisk.com).
Ta Minh Thanh is with Le Quy Don Technical University, Ha Noi,

Vietnam. He is now with the Faculty of Information Technology, Le Quy

Don Technical University (e-mail: thanhtm@lqdtu.edu.vn).

Most existing pruning methods require original training

datasets for retraining [7] or fine-tuning [8]. However, due to

privacy (e.g., face datasets) and transmission issues, training

datasets might be unavailable. In this paper, we propose a

method for effectively pruning DNNs without original

training datasets using genetic algorithms. We argue that we

always need a validation dataset to evaluate a model before

using it. Our method exploits such small datasets for our

proposed pruning models. Various experiments on popular

datasets (MNIST, CIFAR10) have been conducted to show

effectiveness and generalization.

B. Our Contributions

Our main contributions are:

1) We propose a method for pruning models without

original training datasets using the genetic algorithm.

Therefore, we can efficiently reduce the size of DNNs in

case of no training data. That makes our proposed

technique can be applied to real applications, especially

for edge computing.

2) We introduce a novel strategy for fast and efficient

evolving of GA. The strategy requires a much fewer

number of generations for a similar average fitness score

compared to the original genetic algorithm.

3) We demonstrate that the pruned models achieved by our

method are not overfitting on validation datasets. Also,

based on such results, we can prove that our algorithm is

suitable for large pruned models.

II. RELATED WORKS

A. Deep Neural Network

1) Basic concepts

A Deep Neural Network (DNN) is an Artificial Neural

Network (ANN) with multiple layers between the input and

output layers [9], [10]. There are different types of neural

networks, however, they always consist of the same

components: neurons, synapses, weights, biases, and

functions. Mathematically, a deep neural network is defined

as:

where:

is its parameters. These parameters are in high dimensional

space; and the goal is to find a set of values of θ which

maximizes the likelihood of observing some data x (a.k.a

Maximum Likelihood Estimate). Such can be shown as

An Evolution Approach for Pre-trained Neural Network

Pruning without Original Training Dataset

Toan Pham Van, Thanh Nguyen Tung, Linh Bao Doan, and Thanh Ta Minh

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

doi: 10.18178/ijke.2022.8.1.136 1

mailto:pham.van.toan@sun-asterisk.com
mailto:pham.van.toan@sun-asterisk.com
mailto:pham.van.toan@sun-asterisk.com
mailto:nguyen.tung.thanh@sun-asterisk.com
mailto:doan.bao.linh@sun-asterisk.com

follows:

where θ∗ is the optimal parameters in Maximum Likelihood

Estimate settings, and is the likelihood function.

DNNs can model complex non-linear relationships. DNN

architectures generate compositional models where the object

is expressed as a layered composition of primitives. In the

case of using DNN, a hypothesis is defined in the form of its

network architecture. Subsequently, all that is left to do is to

learn the parameters of that network through training.

2) Training a DNN

In order to train a DNN, an objective function must be

defined to measure the accuracy of the model; and the

training process is optimizing this function to improve the

model’s quality as a result. The objective function can be

defined differently depending on the problems we solve.

Some common objective functions while training DNN such

as cross-entropy [11] for classification problems and mean

square error (MSE) [12] for regression problems, and so on.

Optimizing this objective function using gradient descent

algorithm [13] is a common practice in deep learning. The

optimal parameters (weights) are approximated through

iterations; in the case of minimizing a loss function L as the

objective, the gradient descent works as follows:

where η is the learning rate, and θi is the i-th element of the

vector parameter θ.

B. Model Pruning

Model compression is one of the most important

techniques in deploying neural network models to production

level. The purpose of the method is to compress large and

complex models into a lighter, simpler one without

significant loss in accuracy. This technique is especially

meaningful when deployed on low-resource edge devices.

One of the typical model compression techniques is model

pruning. Enormously trained model in deep learning contains

a large amount of redundancy [14] in the form of unimportant

weights that have little contribution to the final output.

Pruning is a method of model compression, lightening the

architecture by cutting off those unimportant connections,

trading a minor loss in quality for performance [14]. Both

original and pruned model have the same architecture, with

the pruned model being sparser (weights with the low

magnitude (values) being set to zeros). In essence, pruning is

finding the binary mask for each layer in the original network.

Each binary mask variable has the same size as the layer

(weight) as shown in Fig. 1. The binary mask is used to

determine which weights should be used for training the

model. These weights can be computed by defining a pruning

type strategy.

Fig. 1. Binary mask in pruned model.

C. Lottery Ticket Hypothesis

DNNs usually have abundant parameters. However, not all

of its parameters are considered useful. Frankle et al. [7]

show that there exist sub-networks with a much fewer

number of parameters than original networks that can still

achieve similar test accuracy. Their method conjectures that

for a moderate-sized network f and randomly-initialized

parameter , there exists a sparse subnetwork f;, given

by configuration m ∈ 0,1d, ||m||0 << d that can be trained

from to perform comparably to trained

versions of the original model f .

However, we cannot start with these subnetworks since

they give lower accuracy. Instead, a full original network is

needed for effective training. A smaller subnetwork can be

uncovered by applying algorithms such as model pruning.

Retraining [7] or fine-tuning [8] might be needed to recover

accuracy.

D. Genetic Algorithm

Genetic algorithms are one of the important algorithms of

evolutionary computing. It is biologically inspired. Darwin’s

theory of evolution states that all species of organisms arise

and develop through natural selection, inherited variations

that increase the individual’s ability to compete, survive, and

reproduce. Through natural selection, the fittest individuals

are selected, and they produce offspring. The best individuals

will be selected to keep in the next generations. If the parents

have higher fitness, their offspring tend to have more chances

of survival. Genetic algorithms also learn from this idea.

Derived from an initial population including a randomly

initialized set of individuals. Through operations such as

selection, crossover and mutation, the new population will be

created after each generation. Each individual will have a

fitness score measuring the quality of it with the current

problem.

This algorithm can be used to solve optimization and

search problems. Some applications of genetic algorithms

can be mentioned such as vehicle routing problems [15], deep

learning hyper-parameter optimizations [16], neural network

weight optimizations [17] [18], and so on.

III. PROPOSED METHODS

In this section, we present our model pruning method using

genetic algorithms. We describe how solution representation,

fitness score, initial population initialization, selection,

genetic operators, and termination conditions in GA are

employed in our approach. We also present our strategies for

evolving quickly and efficiently.

Consider a trained neural network . Let be a

 mask for pruning, then the pruned model will

be . Let p be the desired model sparsity, then

our problem becomes finding m such that the pruned model

with of the weights retained results in similar accuracy as

the trained model.

Solution representation. We use as a score of which

has the same dimensions as m. The corresponding position of

top largest magnitude in scores is 1’s positions in m, the

remaining are 0. In our approach, s is considered solution

representation. This method is illustrated in Fig. 2.

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

2

Fig. 2. Solution representation with p=50

Fitness score. In this paper, we demonstrate our method

on small datasets. Accuracy is the main metric for these two

datasets. So, we use choose this metric as a fitness score to

evaluate each individual.

Initial population initialization. The larger population

size is, the fewer generations evolve. We set the initial

population size (first generation) to 50 to prioritize the

number of generations at the early stage. All individuals in

the first generation are randomly initialized.

Selection. Parents are selected from individuals in the

current generation to produce offspring. Individuals with

high fitness scores are more likely to be selected. We use

square of fitness scores as a metric for selection to increase

discrepancy. This way slightly speeds up evolving compared

to using fitness scores.

Crossover. There are three popular variants of crossover.

They are single-point, two-point, and uniform crossover. In

our method, single-point crossover is adopted. We first

flatten then choose crossover points from uniform

distribution.

Mutation. Every gene has a small probability to be

mutated. The mutated genes are replaced by new values

which are uniformly distributed over . Evolving

process begins with a mutation rate of 0.1 and decreases

gradually as fitness scores increase.

Termination conditions. The search space for finding

sub-networks is huge. Genetic algorithms often terminate

when a predefined condition meets. We end evolving process

when the average of fitness scores is no longer increasing

after 20 generations

Control mutation rate. The control mutation rate is

crucial to achieving good results. A high mutation rate tends

to diversify possible solutions at early generations while

destroying good solutions at final generations. We control the

mutation rate based on the average fitness scores of the latest

generation. In general, we decrease mutation rate as fitness

scores increase.

Control population size. Large population sizes also

diversify possible solutions. However, in earlier generations,

with a high mutation rate, large population sizes in these

generations might cause wasting our time on inefficient

solutions. We change population size based on the average

fitness scores of last generations. In the final generations, it is

harder to improve already good solutions. Increasing

population size alleviates this issue. In general, we increase

population size as fitness scores increase.

Retain best solutions. We bring the top 50% best

solutions from the previous generation to the next. This

brings out several benefits. Firstly, it saves 50%

computations each generation. Secondly, it restores accuracy

of the original network with much fewer generations

(compared to non-retained methods). We also reported

subnetworks with higher accuracy than the original network.

The overall workflow of our proposed method is illustrated

in Fig. 3.

Fig. 3. Overall workflow of our proposed method

IV. EXPERIMENTS

A. Models Settings

In this section, we report different experimental results of

our methodology. Our team conducted multiple research

experiments on the base datasets.

With the purpose of assessing our theory, we employ

simple convolution neural networks in image classification

tasks. Typical vanilla convolutional network architecture

consists of three types of layers: convolution, pooling and

fully connected layers. Our compact architecture is

formulated by multiple layers, each is a stack of two

convolution layers followed by max pooling. The output is

then followed by three fully connected layers. These

networks were trained from scratch and used as our reference

networks in our experiments. They were trained with large

batch size and optimized using stochastic gradient descent.

We experiment pruning models on two types of layers:

convolution and fully connected.

B. Dataset

To demonstrate the elaboration of our theory, we

experiment multiple approaches on the base dataset MNIST

[19] and CIFAR10 [20]. MNIST dataset contains 60,000

images in the training set and 10,000 patterns in the testing

set, each of size 28x28 pixels with 256 gray levels.

CIFAR-10 dataset has the same amount of training and

testing RGB images in 32x32 resolution.

C. Training Scenarios

In the initial experiment, we evaluated our method with a

vanilla convolution neural network on MNIST. Same

training pipeline also applied for the CIFAR-10 dataset with a

more complex model.

MNIST reached 98% on the test set while this number in

CIFAR10 is 82%, a good enough number to examine our

proposed hypothesis. After training the root model to optimal

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

3

point, we applied pruning techniques with strategies that will

be explained in the next section.

D. System Configuration

Our experiments are conducted on a computer with Intel

Core i7 9700K Turbo 4.9GHz, 32GB of RAM, GPU GeForce

GTX 2080 Ti, and 1TB SSD hard disk.

V. EXPERIMENT RESULTS

A. Ablation Study

In this section, we show the effects of each component in

our methods. Mutation rate control and population size

control are crucial in experiments. The details are shown in

Table I and II. Comprehensive results of random pruning

with different settings are reported in Table III and IV. The

metric used for comparisons is average fitness scores at

generation 250 for MNIST and 150 for CIFAR10.

Convergence comparisons between the base strategy and our

proposed Strategy5 are illustrated in Fig. 4 and Fig. 5.

TABLE I: MUTATION RATE AND POPULATION SIZE CONTROL STRATEGIES

ON MNIST

Avg. fitness score Mutation rate Population size

Initial 0.15 50

0.8 0.1 100

0.85 0.05 150

0.9 0.025 300

0.95 0.01 600

TABLE II: MUTATION RATE AND POPULATION SIZE CONTROL STRATEGIES

ON CIFAR10

Avg. fitness score Mutation rate Population size

Initial 0.2 30

0.8 0.15 60

0.85 0.1 100

0.9 0.05 200

0.95 0.01 300

Increase discrepancy. We use weighted random choice

for choosing parents to produce offspring. Two settings are

demonstrated for comparison are Strategy1 and Strategy2.

TABLE III: THE RESULT OF ABLATION STUDY ON MNIST (AT GENERATION

250)

Strategy
Squared

fitness

Retain

20%

Retain

50%

Avg.

fitness

Best

fitness

Strategy1 0.9443 0.9697

Strategy2 ✔ 0.9569 0.9728

Strategy3 ✔ 0.9871 0.9905

Strategy4 ✔ 0.9870 0.9881

Strategy5 ✔ ✔ 0.9883 0.9900

TABLE IV: THE RESULTS OF ABLATION STUDY ON CIFAR 10

Strategy
Squared

fitness

Retain

20%

Retain

50%

Avg.

fitness

Best

fitness

Strategy1 0.6383 0.6493

Strategy2 ✔ 0.6404 0.6613

Strategy3 ✔ 0.7003 0.7074

Strategy4 ✔ 0.7114 0.7184

Strategy5 ✔ ✔ 0.7096 0.7197

Strategy1 takes fitness scores of individuals as weights.

Strategy2 takes squared fitness scores as weights. Squared

fitness scores increase weight discrepancy. This causes the

better individuals to have even more chances of selection.

Especially, at final generations, when fitness scores of

individuals are very close to each other, using squared fitness

scores could be a good tiebreaker.

Retain best solutions. In the evolving process, there is no

guarantee that the fittest individuals are selected.

Additionally, producing an entire new population is

computationally expensive when population size is large. For

reducing computational cost while maintaining population

size, we experiment retaining top 20% and 50% fittest

individuals. These two methods both improve fitness scores.

As shown in Table III and IV, Strategy3 and Strategy4

achieve similar fitness scores. Strategy4 is also adopted in

our method since it saves more computational cost.

B. Checking Generalization

Generalization is the model’s ability to adapt properly to

new, previously unseen data, drawn from the same

distribution as the one used to create the model. This is a

crucial characteristic in model evaluation. We run

re-evaluation of our pruned models which evolved on test set

on both training set and testing set to check the

generalization.
As illustrated in Fig. 6 and Fig. 7, the better pruned

network on test set the better accuracy on training set. In

earlier generations, the accuracy gaps between training set

and test set were small. These gaps increase when

approaching the accuracy of the original trained model. At

generation 250, accuracy of the best pruned network reaches

accuracy of original network. After that, there are slow and

small improvements.

C. Results

We successfully pruned 50% weights trained models on

MNIST and CIFAR10 without training data. Our pruned

models on MNIST do not compromise accuracy score. Table

III shows the results of ablation study on MNIST at

generation 250. In overall, applied strategies generally help

increase the accuracy score. The score of the base pruned

method is 0.9443 on average and reaches the peak of 0.9697.

The highest number can be found in Stategy5 find, with the

best score of 0.9900.

Fig. 4. Convergence comparison between base strategy and Strategy5 on

MNIST

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

4

Fig. 5. Convergence comparison between base strategy and Strategy5 on

CIFAR10

Fig. 6. Evaluate best pruned networks through generations on MNIST

Fig. 7. Evaluate best pruned networks through generations on CIFAR10

VI. CONCLUSION AND FUTURE WORK

In this work, we conducted various extensive experiments

to show the effectiveness of genetic algorithms in achieving

good performance of pruned networks. We conclude that

compared to traditional fine-tuning, genetic algorithms are

another promising approach to recover performance decrease

due to previous pruning methods.

The hypothesis for this experiment is based on intuition of

train-data free pruning purposes. We are looking forward to

extending our work in the future in terms of scale

optimization and larger dataset.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Toan Pham Van came up with the ideas and designed the

algorithm; Thanh Nguyen Tung, Linh Bao Doan conducted

the research and reported experimental result; Thanh Ta

Minh gave technical advice and reviewed the paper; all

authors had approved the final version.

ACKNOWLEDGMENT

This work is partially supported by Sun-Asterisk Inc. We

would like to thank our colleagues at Sun-Asterisk Inc for

their advice and expertise. Without their support, this

experiment would not have been accomplished.

REFERENCES

[1] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh,

C. Yu, and P. Micikevicius, “Accelerating sparse deep neural

networks,” arXiv preprint arXiv:2104.08378, 2021
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015
[3] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

Convolutional neural networks for resource efficient inference,” arXiv

preprint arXiv:1611.06440, 2016
[4] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very

deep neural networks,” in Proc. the IEEE International Conference on

Computer Vision, 2017, pp. 1389–1397.

[5] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep

convolutional neural networks,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1–18,

2017
[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured

sparsity in deep neural networks,” Advances in Neural Information

Processing Systems, vol. 29, pp. 2074–2082, 2016.
[7] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding

sparse, trainable neural networks,” arXiv preprint arXiv:1803.03635,
2018.

[8] N. Liu, G. Yuan, Z. Che, X. Shen, X. Ma, Q. Jin, J. Ren, J. Tang, S. Liu,

and Y. Wang, “Lottery ticket preserves weight correlation: Is it
desirable or not?” in Proc. International Conference on Machine

Learning. PMLR, 2021, pp. 7011–7020.
[9] Y. Bengio, Learning Deep Architectures for AI. Now Publishers Inc,

2009.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[11] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” in Proc. 32nd

Conference on Neural Information Processing Systems (NeurIPS),

2018.
[12] D. M. Allen, “Mean square error of prediction as a criterion for

selecting variables,” Technometrics, vol. 13, no. 3, pp. 469–475, 1971.
[13] S. Ruder, “An overview of gradient descent optimization algorithms,”

arXiv preprint arXiv:1609.04747, 2016.

[14] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017.

[15] B. M. Baker and M. Ayechew, “A genetic algorithm for the vehicle
routing problem,” Computers & Operations Research, vol. 30, no. 5,

pp. 787–800, 2003.

[16] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary

algorithm,” in Proc. the Workshop on Machine Learning in
High-performance Computing Environments, 2015, pp. 1–5.

[17] S. Ding, C. Su, and J. Yu, “An optimizing bp neural network algorithm

based on genetic algorithm,” Artificial Intelligence Review, vol. 36, no.
2, pp. 153–162, 2011.

[18] J. N. Gupta and R. S. Sexton, “Comparing backpropagation with
genetic algorithm for neural network training,” Omega, vol. 27, no. 6,

pp.679–684, 1999.

[19] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[20] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (Canadian institute
for advanced research).” [Online]. Available:

http://www.cs.toronto.edu/~kriz/cifar.html

Copyright © 2022

by the authors. This is an open access article distributed

under the Creative Commons Attribution License

which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

5

https://creativecommons.org/licenses/by/4.0/

Pham Van Toan received the Bachelor of

Engineering degree and the Master's degree of
Computer Science from Hanoi University of Science

and Technology, in 2016 and 2021, respectively. He is

Head of AI Research in Sun Asterisk Inc. His research

interests lie in the area of deep learning, model

compression techn\mque, and computer vision.

Thanh Nguyen Tung received his B.S from Hanoi
University of Science and Technology in electronics

and telecommunication engineering.
He is currently a Machine Learning Research

Engineer in R&D Lab, Sun Asterisk.

Linh B Doan received his B.S from National

University of Civil Engineering in Information

Technology. His research interests are machine

learning, computer vision.

He is currently a Machine Learning Research Engineer
in R&D Lab, Sun

Ta Minh Thanh

received the Bachelor of

Engineering degree and the Master degree of

Computer Science from National Defence Academy,
Japan, in 2005 and 2008, respectively. He was lecturer

of Le Quy Don university, Ha Noi, Viet Nam from
2005. In 2015, he received the Ph.D

degree in

Computer Science from Tokyo Institute of

Technology, Tokyo, Japan. He received the standards
of associate professor title in 2019.

He is also the member of IPSJ Japan and IEEE. His research interests lie in
the area of watermarking, network security and computer vision.

International Journal of Knowledge Engineering, Vol. 8, No. 1, June 2022

6

