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 Abstract—This paper presents the results of constraint-based 

automatic question generation for paragraphs from privacy 

policy documents. Existing work on question generation uses 

sequence-to-sequence and transformer-based approaches. This 

work introduces constraints to sequence-to-sequence and 

transformer based T5 model. The notion behind this work is that 

providing the deep learning models with additional background 

domain information can aid the system in learning useful 

patterns. This work presents three kinds of constraints –

 

logical, 

empirical, and data-based constraint. The constraints are 

incorporated in the deep learning models by introducing 

additional penalty or reward terms in the loss function. 

Automatic evaluation results show that our approach 

significantly outperforms the state-of-the-art models.

 

 Index

 

Terms—Question generation, constraints, privacy 

policy, transformer, Sequence-to-Sequence model.

  

 

I. INTRODUCTION 

Question generation is defined as the task of automatically 

generating a grammatically, and syntactically correct 

interrogative sentence based on some context. Some popular 

use cases of question generation are in education [1]-[2], 

human-computer interaction [3], and question answering [4]-

[6]. In addition to these applications, question generation can 

also aid in creating data sets for question answering systems. 

The motivation behind this work is to generate a better class 

of questions that can be used to build question answering 

systems for privacy policy domain. Table I shows an example 

from PolicyQA data set [7] that is used for generating 

questions in this work. The example is an excerpt from the 

privacy policy document of TGI Fridays. 

Most existing work in question generation has focused on 

sequence-to-sequence models [9]-[19]. Recently, some 

researchers have used transformer models [20]-[23] for this 

task. This work on question generation focuses on 

incorporating additional knowledge, expressed using 

constraints, with existing sequence-to-sequence models and a 

transformer-based (T5) [24] approach. The performance of 

deep learning models is dependent on the amount of data 

available to them for learning useful patterns. Their ability to 

utilize vast amounts of data to learn patterns is a key factor 

behind their success. However, the usage of small data sets 

can lead to sub-optimal results. Since it is quite challenging 

to acquire well annotated data sets in domains such as privacy 
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policy domain, we explore constraints as means to 

supplement the knowledge available to our models. The 

addition of constraints also contributes to the interpretability 

of deep learning models which otherwise are considered 

black boxes. The baselines discussed in Lamba and Hsu 

(2021) [8] were considered while designing constraints. 

These constraints served as input during the model training 

phase and the results produced in this work demonstrate their 

effectiveness. For each of the three models, an improvement 

in BLEU-n, METEOR, and ROUGE-L scores is seen. 

The novel contributions of this research are listed below: 

• To our best knowledge, this work is the first to use 

constraints for question generation. Our work studies the 

effects of different kinds of constraints: logical, empirical, 

and data based. It also analyses the effect of hybrid 

constraints.  

• The approach presented in this paper has successfully 

boosted the performance of the models over the baselines by 

a significant margin. For each model, results indicate 

consistent improvement in the ROUGE-L, METEOR, and 

BLEU-n scores over the baseline results.  

• This work is an extension of Lamba and Hsu (2021) [8] 

and is the first known attempt to generate questions in the 

privacy policy domain. 

 
TABLE I: SAMPLE CONTEXT-QUESTION-ANSWER TRIPLET FROM POLICY 

QA DATASET 

Context
 

“The information that you provide is collected by TGI Fridays. In 

the case of links to our gift card and guest recognition sites, the 

information you voluntarily provide at those sites will only be 

shared with those service vendors who help TGI Fridays 

administer those websites or mobile application and the services 

they provide. In any case, TGI Fridays is the lawful “owner” of the 

information and each of these vendors may use the information 

only for the purpose of administering the digital or mobile 

application and its services for TGI Fridays and will take all 

necessary precautions to protect the information. Ownership of 

any information you provide us will be held solely by TGI Fridays. 

We will not
 
sell ownership of this data to any other company or 

organization.”
 

 

Question: Does the third party follow the privacy practice?
 

 

Answer: will not
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II. RELATED WORK 

A.  Question Generation 

Prior to the year 2017, question generation was studied 

using rule-based approaches. Some prominent work that used 

rule-based systems was presented by Mitkov and Ha (2003) 

[26], Gates (2008) [27], Heilman and Smith (2009) [29], 

Chali and Hasan (2015) [30], Khullar et al. (2018) [28], and 

Dhole and Manning (2020) [31]. Rule-based systems 

required immense human effort to construct rules, which are 

seldom generalizable to other domains. However, these 

systems offer some benefits in terms of increased model 

interpretability and provide more control over the model to 

developers. Du et al. (2017) [9] presented the first work that 

used deep learning to generate questions. They used an 

attention-based [33] sequence-to-sequence model [32] with 

context-question pair as input, without making use of the 

answer sequence for training the model. 

Broadly, answer-aware and answer-unaware models [34] 

are two categories of neural question generation systems. Du 

et al. (2017) [10] presented a two-step answer-unaware 

approach. The first step is identifying question worthy 

sentences and the second is using those sentences to generate 

questions. Zhou et al. (2017) [11] presented an attention-

based sequence-to-sequence model that used additional 

information besides the context-question pair. This 

information includes answer position, and other linguistic 

features like part-of-speech [42] and named entity tags [41]. 

Answer-aware models tend to include answer words in the 

predicted question which is a major drawback. Kim et al. 

(2019) [12] used a special token to mask the answer in the 

paragraph. Song et al. (2018) [13] encoded the answer and 

source text separately. Hu et al. (2018) [14] focused on topic-

specific question generation where the topic was provided as 

additional information to the model.  

Sequence-to-sequence models for question generation 

have shown an improvement in model performance when 

additional information is provided as input to the model. 

Harrison and Walker (2018) [18] used additional information 

obtained from linguistic features like, word case, named 

entity tags and entity co-reference resolution. Cao et al. (2020) 

[19] also incorporated additional information from data to 

train an attention-based sequence-to-sequence model with 

copy mechanism [43]. Ma et al. (2020) [44] used answer 

position, alphabetic case, named entity and part of speech tags 

as auxiliary input. 

Question generation has also been approached as a two-

step process, where the generation of the interrogative word 

precedes the generation of the remaining text. One such work 

is presented by Sun et al. (2018) [15] who used the answer 

type to generate an interrogative word and then used the 

relative distance between words given in the context and 

answer to generate the remaining words of the question. Kang 

et al. (2019) [16] present a similar work with two modules, 

one for classifying the interrogative word and the second to 

generate the remaining question using the generated 

interrogative word. In our work, we focus on adding 

additional domain information articulated as constraints, to 

sequence-to-sequence and T5 transformer model, as opposed 

to using linguistic features like parts-of-speech tags, 

alphabetic case information, and answer text/position. 

B.  Constraint-Based Approaches 

Constraints can be designed by experts and enable the deep 

neural model to be on par with human reasoning and 

understanding. Domain knowledge can be expressed in 

different ways for deep learning networks. Dash et al. (2021) 

[45] presented two major categories for representing domain 

knowledge for deep leaning models: logical constraints and 

numerical constraints. 

Borghesi et al. (2020) [46] presented a survey on ways to 

incorporate domain knowledge in neural networks. Their 

survey states that domain knowledge can be represented in 

multiple ways including algebraic equations and graphs. 

Experts can create specific features for any domain and 

express them using either propositional logic or first-order 

logic with the goal to constrain the neural network by means 

of parameters or structure. The earliest work that used 

propositional logic to express constraints in neural networks 

can be traced back to the early 90’s by Towell et al. (1990) 

[47] and Fu (1193) [48]. Their work became popular, at the 

time, despite the inability of the proposed neural network 

models to learn new rules. A more recent approach was given 

by Xu et al. (2018) [49] to represent constraints using 

propositional rules. Their approach used a loss function to 

calculate the dissimilarity between constraints and model 

output.  

Constraints have also been expressed using first-order 

logic rules: Sikka et al. (2020) [54] used it to represent 

declarative knowledge that is incorporated while training the 

model. However, incorporating rules into neural networks 

presents some challenges. Li and Srikumar (2019) [50] 

discussed three major challenges, which are: mapping rules 

to actual network nodes; cyclic dependencies in the network 

introduced by logical rules; and finally, the issue of logic not 

being differentiable. Yao et al. (2021)) [51] refined BERT 

using logical rules to include human explanations. 

Giunchiglia and Lukasiewicz (2021) [55] proposed an 

approach that expressed constraints as logic rules and defined 

a loss function to incorporate them. Recently, Silvestri et al. 

(2021) [61] combined semantics-based regularization [52] 

and constraint programming [53] to inject knowledge into a 

deep learning model. 

Second category of constraints is numerical constraints [45] 

which can be expressed in multiple ways, including: as a loss 

function; as constraints on weight; and through regularization. 

Aghaebrahimian (2017) [56] applied a constraint on the 

number of shared patterns between sentences and questions 

for a deep learning-based question answering system by 

defining a loss function. In the case of our deep learning 

models, we have used loss function augmented with 

additional penalty or reward terms to impose constraints.   

Knowledge has also been added to neural networks 

through weight-based constraints. One such work is 

presented by Hu et al. (2016) [57] who developed a method 

to transfer information from logic rules to the actual neural 

network via network weights. Jiang et al. (2020) [58] 

combined regular expressions with neural networks to create 

weighted finite state automata. Another technique that can 

add numerical constraints to a deep learning model is called 

regularization. It is applied by adding penalty terms, like L1 

norm and L2 norm, to the objective function. This limits the 

capacity of the deep learning model. 

International Journal of Knowledge Engineering, Vol. 7, No. 2, December 2021

15



  

III. METHODOLOGY 

A. Problem Statement  

More formally, question generation task is defined as: 

Given a passage from a privacy policy document as input,   

𝑋𝑝𝑎𝑠𝑠𝑎𝑔𝑒 = (𝑥1, 𝑥2, … , 𝑥𝑛) , the deep learning model 

generates a question represented by 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑇). The 

goal of this task is to find the best 𝑌̅ using Equation 1: 

 

𝑌̅ = argmax
𝑥

𝑃(𝑌 | 𝑋𝑝𝑎𝑠𝑠𝑎𝑔𝑒)                        (1) 

 

where 𝑃(𝑌 | 𝑋𝑝𝑎𝑠𝑠𝑎𝑔𝑒) is the conditional log-likelihood of 

the predicted question 𝑌 , given input 𝑋𝑃𝑎𝑠𝑠𝑎𝑔𝑒 . This work 

does not use the answer sequence as input in any way, neither 

the actual sequence nor its position. This work uses domain 

knowledge to train several deep learning models to produce 

semantically and syntactically correct questions. The domain 

knowledge is expressed as constraints that the deep learning 

network needs to obey. A violation of the constraint penalizes 

the loss function, or in case of data constraint a reward 

function is defined to reward the network for satisfying the 

constraint. The objective function is modified to introduce a 

new knowledge-based loss term 𝐿𝑜𝑠𝑠𝐶 for each constraint 

being used. The new objective function is given below: 

 

𝐿𝑜𝑠𝑠 =  argmin
𝑥

𝐿𝑜𝑠𝑠(𝑌, 𝑌̅) +  𝜆1𝑥𝐿𝑜𝑠𝑠𝐶1 (𝑌̅) +

 𝜆2𝑦𝐿𝑜𝑠𝑠𝐶2 (𝑌̅) − 𝜆3𝑧𝐿𝑜𝑠𝑠𝐶3 (𝑌̅)    (2) 

 

where, 𝑥 and y have a value of 0 when a constraint is satisfied 

and 1 otherwise. The λ  terms in Equation (2) are 

hyperparameters that denote the weights of x, y and z  in the 

objective function. z denotes the function given by Equation 

(3) below: 

 

𝑧 =  
1

𝑛
 [𝜆1𝑥1 + 𝜆2𝑥2 + ⋯ + 𝜆𝑛𝑥𝑛]                (3) 

 

where λi is an empirically learnt term that provides weight to 

the ith term in the itemset Z. xi is assigned the value 1 if the 

ith term is present in a generated question, otherwise xi is set 

to 0. This is explained further in the paragraph on domain 

constraints below. 

B. Proposed Constraints 

Logical Constraint 

The first type of constraint that has been designed for this 

work is a logical constraint that is the outcome of human 

knowledge. This constraint uses named entity tags presented 

in Lamba and Hsu (2021) [8] and forces the model to have at 

least one named entity term in the generated question. The 

core idea here is to focus on the key entity terms identified in 

the passage and formulate questions focusing on those terms.  

The absence of a named entity term imposes the logical 

constraint on the objective function which assigns a value of 

one to function, zero otherwise. For brevity, this constraint 

will be referred to as C1 and is defined as follows: Let  N be 

a set of all named entities and Y be a set of all words in a 

predicted question, such that 𝑌 =  (𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛 ) . 

Then, C1 is given by the following binary function in 

Equation (4): 

𝑓(𝑐1)  =  {
0     𝑖𝑓 ∃𝑡 ∈ [1, 𝑛], 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑡 ∈ 𝑁

1   𝑖𝑓 ∀𝑡 ∈ [1, 𝑛],    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑡 ∉ 𝑁
      (4) 

 

Empirical Constraint 

Based on empirical results presented in Lamba and Hsu 

(2021) [8], it was observed that underperforming models are 

predisposed to output the same word in consecutive positions 

in the question. For example, “Do you you collect collect my 

data?”. This constraint checks for duplicated consecutive 

terms and if found, the value of the function is 1, otherwise it 

is 0. The constraint is represented by Equation (5).  

 

f(c2) =  {
1 if ∃t ∈ [2, n], such that yt-1 =  yt

0 if ∀t ∈ [2, n], such that yt-1 ≠ yt
       (5) 

 

where Y is a set of all words in a predicted question such that 

Y =  (y1 + y2 + ⋯ +  yn ). This constraint will hereon be 

referred to as C2. 

 

Domain Constraint 

The third type of constraint is learnt directly from the 

context data, and it is referred to as domain constraint. In this 

work, we mine frequent item-sets using the Apriori algorithm 

[35] and then use 1 of the item-sets to design a constraint to 

inject information into the models. We experimented with 

several values of support and confidence and the best values 

were obtained empirically. This constraint, unlike the other 

two, does not penalize the objective function. Instead, it 

rewards the objective function if it is satisfied.  This 

constraint will be referred to as C3 and is given by Equation 

(3). The value of 𝑧 ∈ [0,1] such that if all words of the item 

set of size n, represented by Z, are present in a predicted 

question then the objective function will receive maximum 

reward.  

C. Deep Learning Models 

This section first discusses the Sequence-to-sequence 

models, followed by the transformer model used in this work. 

The sequence-to-sequence models use a gated recurrent unit 

(GRU) [59] encoder-decoder with paragraph level encoding. 

This work uses T5 Transformer model [24] that has been 

pretrained on C4 corpus [24] and is fine tuned for our data. 

 

Encoder 

Similar to work of Zhou et al. (2017) [11], we provide a 

concatenation of the word vector with the label embedding 

vector as input to the encoder. The input is used to compute 

the encoder hidden state at time t, which is represented by ht, 

using the equation below: 

 

ht = f(Wh ht-1 +  Wxxt)        (6) 

 

where, ht-1  represents the previous hidden state of the 

encoder, xt is the word at time 𝑡, and W represents the weight 

matrices for the hidden states and the input, respectively. We 

use a unidirectional GRU encoder to produce the hidden 

vector for the decoder.  

 

Decoder 

The decoder accepts the hidden state from the previous unit 

to predict a sequence of words in the question. The decoder 
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output at time t is represented by yt  and can be computed 

using the equation below:  

 

yt = f (Whht)        (7) 

     

where, ht represents decoder hidden state at time t and Wh 

represents the weight matrix. 

 

Decoder with attention 

This work also uses a GRU decoder with attention [33] to 

generate the sequence of words in the question.  

 

T5 Model  

T5 stands for Text-to-Text Transfer Transformer and was 

proposed by Raffel et al. (2020) [24]. This work uses the 

implementation of T5 provided by the Hugging Face library 

[64] for training T5-small model [24].  The architecture of T5 

is similar to one proposed by Vaswani et al.  (2017) [60] with 

a few architectural modifications. 

D. Data Preparation 

The data set used in this work is PolicyQA [7] which 

consists of over 25000 examples (context-question-answer 

tuples). The data set was first shuffled and then divided into 

training (~80%), development (~10%), and test (~10%) sets. 

As part of data preprocessing, the following steps were 

performed: (1) The entire data was changed to lowercase; (2) 

Named entities [8] consisting of a pair of words were 

hyphenated to make it a single word; (3) SOS and EOS tokens 

were appended to all questions in the data; (4) Spelling 

disparities in the data were fixed. For example, the word 

“parties” was spelled as “parities”; (5) Shortened words were 

expanded to their full length, for example, the word 

“information” was written as “info” in many places. This step 

was performed to ensure consistency throughout data; and (6) 

The last letter of the question and question mark were 

intentionally separated by a space for consistency. 

IV. EXPERIMENTAL SETUP 

This research uses PyTorch version 1.7.1. for all deep 

learning models. The models have been trained on Nvidia 

Tesla v100. The encoder-decoder hidden sizes were 

alternated between 256, 500, 1000, and 2000. Results 

presented in Lamba and Hsu (2021) [8] showed that greedy 

decoding produces better results for this task, hence greedy 

decoding has been used for all models. SGD with learning 

rate 0.001 was used for optimization. For training, teacher 

forcing [62] for sequence-to-sequence models was used. 

Lowest perplexity on development set was used to select the 

best model.  

A.  Baseline Models  

The baselines for this work have already been discussed in 

Lamba and Hsu (2021) [8]. These baselines are listed below: 

Seq2Seq: It is a basic sequence-to-sequence model [32] 

that uses a GRU encoder-decoder model. The input to this 

model was the context concatenated with named entity tags 

and the text was not reversed for the experiments. This model 

does not use any pre-trained word embedding. 

Seq2Seq+attention: A GRU encoder-decoder model with 

Bahdanau attention [33]. This model does not use any pre-

trained embedding and uses context concatenated with named 

entities as input.  

NQG (2017) [9]: This uses an attention-based LSTM 

encoder-decoder model to generate a question from a given 

context. Experiments were conducted with sentence level and 

paragraph level encoder. The best results were obtained using 

paragraph level encoder with GloVe [63] pre-trained 

embedding.  

Transformer-based model (T5): T5-small model is fine-

tuned for the task of question generation on privacy policy 

documents. This model consists of 60 million parameters. 

The input to the model is composed of a concatenation of 

policy passage with named entities described in Lamba and 

Hsu (2021) [8]. 

B.  Evaluation Metrics  

The evaluation package by Chen et al. (2015) [40] is used 

for evaluating the predicted questions. The questions are 

evaluated using BLEU-n (Papineni et al., 2002) [37], 

METEOR (Lavie & Denkowski, 2009) [38], and ROUGE-L 

(Lin, 2004) [39].  

V. RESULTS AND DISCUSSION 

The baseline results of Lamba and Hsu (2020) [8] along 

with results of constraint-based models are presented in Table 

II. The table is divided into 4 sections for ease of 

understanding. The first section presents the results of 

baseline NQG (2017) from Lamba and Hsu (2021) [8]. The 

next part of the table shows the results of baselines Seq2Seq, 

followed by Seq2Seq +NER (input concatenated with named 

entity tags) from Lamba and Hsu (2021) [8], and finally the 

results showing the effects of constraints C1, C2, and a 

combination of the two constraints on the model. 

The results in section two show that the application of C1 

produces an improvement across all evaluation metrics with 

the best ROUGE-L score. ROUGE-L obtained in this case 

shows an 8.4% increase over Seq2Seq+NER and an 18.9% 

improvement over the basic Seq2Seq model. The highest 

METEOR score is achieved when both C1 and C2 are applied 

to the Seq2Seq model. This brings a 25.1% improvement over 

the basic Seq2Seq model. The application of C1 and C2 also 

shows improvement across all BLEU-n scores. The 

application of any kind of constraint shows a considerable 

improvement over Seq2Seq and outperforms NQG (2017) [9] 

model for ROUGE-L and METEOR. 

The third part of the table shows the results of attention 

based Seq2Seq models. The trends observed here are like the 

ones presented in the second part of the table. The application 

of constraints provides a boost to results as compared to the 

baseline models. The application of all three constraints 

individually and when combined beats the baselines. The 

application of C2 gives the best METEOR score which shows 

a 12.59% improvement over Seq2Seq+attention and 13.77% 

improvement over Seq2Seq+attention with named entity 

labels. Based on the results produced by the sequence-to- 

sequence models, we can see that the application of 

constraints provides a boost to the results. 
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TABLE II: EVALUATION RESULTS (IN PERCENTAGE) FOR SEQUENCE-TO-SEQUENCE AND TRANSFORMER MODELS WITH GREEDY DECODING 

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L  

NQG (2017) 32.66 18.27 12.73 9.94 15.54 30.63  

Seq2Seq (Lamba and Hsu, 2021 [8])  27.22 15.52 8.63 5.12 14.23 30.16  

Seq2Seq+NER (Lamba and Hsu, 2021 [8]) 24.66 14.33 8.96 5.80 14.93 33.07  

Seq2Seq+NER+C1 28.41 16.38 9.67 7.04 16.22 35.85  

Seq2Seq+NER+C2 31.08 18.67 11.68 8.53 17.79 35.18  

Seq2Seq+NER+C1+ C2 31.11 18.66 11.63 8.49 17.80 35.13  

Seq2Seq+Attn (Lamba and Hsu, 2021 [8]) 28.09 16.00 9.86 6.30 14.96 31.84  

Seq2Seq+Attn+NER (Lamba and Hsu, 2021 

[8]) 
28.68 16.24 9.95 6.87 15.81 31.51  

Seq2Seq+Attn+NER+C1 31.11 18.66 11.62 8.48 17.80 35.15  

Seq2Seq+Attn+NER+C2 28.40 16.38 9.67 7.04 16.22 35.85  

Seq2Seq+Attn+NER+C3 31.12 18.66 11.62 8.48 17.80 35.15  

Seq2Seq+Attn+NER+All 31.10 18.66 11.63 8.49 17.80 35.12  

T5-small (Lamba and Hsu, 2021 [8]) 31.32 17.14 11.51 8.53 18.29 31.02  

T5-small+NER (Lamba and Hsu, 2021 [8]) 32.98 18.22 11.89 8.49 18.74 32.16  

T5-small+NER+C1 29.02 14.88 9.26 6.48 18.23 28.38  

T5-small+NER+C2 29.18 14.43 9.01 6.42 17.40 27.96  

T5-small+NER+All 3 31.99 18.10 11.92 8.42 18.56 32.85  

 

The last section of Table II shows the results of T5 model. 

Results show that application of C1 and C2 by themselves do 

not show any improvement in scores. The last row in the table 

shows that when all three constraints are applied to the model 

then ROUGE-L beats the T5 baselines and METEOR is close 

to the T5+NER baseline. However, the improvement 

produced by the application of constraints to T5 are not at par 

with the improvements produced in the sequence-to-sequence 

models. We further analyze the questions produced by T5 

model and for this we randomly select some of the predicted 

questions. Table III shows two examples of predicted 

questions from our study set along with the actual questions. 

The predicted questions are correct, complete, and 

syntactically correct. The first ground truth question in Table 

III asks whether the organization shares customer data with 

others and the generated question is clearer and more precise 

and is an improvement over the actual question. The two 

questions given in Table III are evaluated using the evaluation 

metrics and they produce a METEOR score of 30% and 

ROUGE-L of 45.35%. There are many more examples from 

the predicted questions that suggest that low scores of T5 can 

be attributed to the inability of existing metrics not being able 

to capture the nuances of question generation.  

 

TABLE III: QUESTIONS PREDICTED USING TRANSFORMER MODEL 

Ground Truth: Do you share my information with others? 

 

Predicted Question: Does the company share user’s information with a third-party? 

 

 

Ground Truth: Does you collect my information to enhance or personalize my 

experience? 

 

Predicted Question: Does the company use user’s information for customized services? 

 

VI. CONCLUSION AND FUTURE WORK 

The experimental results discussed in this work establish 

that a constraint-based approach to question generation is 

effective. The results also provide a performance comparison 

between sequence-to-sequence models and a T5 model. This 

work is a continuation of the work discussed in Lamba and 

Hsu (2021) [8]. The addition of constraints to three different 

models shows an improvement in performance as measured 

by ROUGE-L, METEOR, and BLEU-n scores. Thus, this 

work paves the way for future research in question generation. 

This work can be extended in the future to incorporate more 

constraints and experiment exhaustively with combination of 

constraints presented in this work. This research uses an out-

of-the-box pre-trained T5 model [24], which in future could 

be redesigned for the domain and task. The pre-training could 

be done on legal documents that are close to privacy policies. 

Another logical extension of this work is the exploration of 

different ways of representing constraints and incorporating 

them in deep learning models.  
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