
  

 

Abstract—Finding and acquiring promising talent has always 

been one of the most important management issues in various 

organizations. In professional sports, this activity is referred to 

as scouting. For a long time, it was left to the intuition and 

experience of individuals. To make scouting more rational, it is 

important to quantitatively evaluate the skills of potential 

players. Traditional methods of evaluating player ability have 

focused on assessing the individual, but another approach is 

possible that evaluates player ability while considering 

compatibility with other players. In this study, we developed a 

sports player ability estimation method for basketball that 

considers compatibility between players by using Factorization 

Machines, which are machine learning models mainly used in 

recommendation systems and known for their superiority in 

extracting interactions between elements. In addition, we 

proposed a player scouting framework based on our developed 

method. Experiments based on professional basketball leagues 

showed that the proposed framework can estimate abilities more 

realistically than existing methods and has effective properties 

for scouting players. The widespread use of the system based on 

the proposed framework is expected to improve the efficiency of 

scouting, increase the liquidity of the player market, and reduce 

the mismatch between teams and players, thereby increasing the 

level of competition and revitalizing the professional sports 

industry. 

 
Index Terms—Sports Analytics, Factorization Machines, 

Basketball 

 

I. INTRODUCTION 

In sports team management, the winning percentage or 

performance of a team is one of the most important 

performance indicators. Several studies indicate a 

relationship between the winning percentage and the 

management situation/profit of teams [1, 2]. Therefore, 

general managers must strive to build a system that improves 

performance to maximize the win rate, as well as identify new 

influential players. Thus, as in any organization, one of the 

most important management decisions is to extend invitations 

to join a team. However, in sports, this framework, known as 

scouting, is typically based on the intuition and experience of 

individuals. Consequently, players join a team with high 

expectations but often perform below expectations, which is 

a serious management issue. Therefore, quantitative decision-

making is required to make scouting more rational. To 

achieve this objective, particularly in team sports, we believe 

that a quantitative evaluation framework that satisfies the 

following three conditions is required. 

 Ability to evaluate performance as an individual. 

 Ability to evaluate performance as a lineup. 

 Ability to predict unknown lineup performance. 

To satisfy the first condition, which focuses on the 

evaluation of individual abilities, the plus/minus rating 

method is typically employed [3]. This method expresses the 

number of points scored by each player by assigning the 

number in the field. The most significant advantage of this 

method is that it can express various abilities, including the 

offensive or defensive abilities of players, in a single 

dimension, i.e., scoring. The simplicity of this method renders 

it applicable to various sports teams. Different application 

methods based on this method have been proposed in 

basketball, i.e., the adjusted plus/minus (APM) method [4], 

which uses linear regression to assign scores, and the 

regularized APM (RAPM) [5], which uses ridge regression 

for the same purpose. 

However, in team sports, lineup abilities cannot always be 

expressed as the sum of each player’s ability in lineups. In 

other words, players’ personal chemistry and role 

assignments are influencing factors. Therefore, appropriate 

methods must be adopted to evaluate and estimate 

performance as a lineup, which cannot be measured by 

individual abilities. In this regard, a method known as 

“extended RAPM”, which is a version of RAPM that enables 

lineup evaluation as well as individual evaluation, has 

demonstrated relatively good performance in experiments for 

estimating known lineup evaluations [6]. However, this 

method [6] cannot completely reflect interactions in the 

model and effectively predict the lineup performance when 

an unknown player joins the team. To the best of our 

knowledge, studies regarding the estimation of unknown 

lineups in the basketball domain have not been conducted. 

In this study, to develop a scouting support system for 

basketball, we propose a framework that makes player 

recommendations based on lineup performance estimation by 

considering interactions among players. An overview of the 

proposed system is shown in Fig. 1. The system obtains data 

from various leagues worldwide and uses this data to 

establish a performance estimation model and implement the 

appropriate filtering logic. The general manager receives an 

ordered list of suitable players for the team. The proposed 

framework corresponds to the performance estimation and 
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filtering shown in Fig. 1. 

 
Fig.1. Overall structure of our scouting support system. 

 

The proposed method is based on the concept of 

Factorization Machines (FM) [7], which is a machine 

learning model originally developed for recommendation 

algorithms, such as those for click-through rate prediction. It 

is known for its ability to extract interactions between 

elements from sparse datasets, making it appropriate for this 

task, which attempts to explicitly incorporate interactions 

between players. Furthermore, it is applicable for estimating 

unknown interactions [7], which satisfies the requirements of 

the proposed method. Recently, several deep neural network 

(DNN) [8] models, extended from FM to manage sparse and 

dense mixed datasets, have been proposed [9], demonstrating 

the development of this field. In this study, we adopt 

xDeepFM [10], which is one of the most effective models 

among the existing models, as the main model to manage both 

sides of the dataset: the sparse dataset (player information that 

comprises each lineup) and the dense dataset (statistics for 

each player). 

Using six years’ worth of EuroCup [12] and EuroLeague 

[13] play-by-play (PbP) data and the statistical data of players 

(box score) obtained by scraping official websites, we 

conducted several comparative experiments to confirm the 

effectiveness of our proposed method. Firstly, the results 

demonstrate that our method performs better than previous 

methods. Furthermore, we show that the model can estimate 

the performance of unknown lineups with an accuracy 

comparable to that of known lineups. Additionally, we verify 

that interactions among players contribute to the accuracy of 

team performance estimation and that a certain number of 

players are predicted to perform well only on particular teams. 

The remainder of this paper is organized as follows: 

Section II summarizes related studies, Section III describes 

the datasets used, Section IV explains the proposed method, 

Section V presents the experiments and their results, and 

Section VI provides the conclusions and recommendations 

for future studies. 

II. RELATED WORKS 

A. Plus/Minus Rating 

The Plus/Minus rating [3] is a method for expressing each 

player’s ability in terms of the number of points scored or lost 

based on the score difference during play. For example, if a 

player scores 30 points for their team and their team wins by 

10 points, then the player’s Plus/Minus rating (PM) is +20. 

Conversely, if the player scores 20 points but their team loses 

by 10 points, their PM is −10. 

This method is based solely on the score and is independent 

of the specific sport. It is a top-down method used in many 

team sports, including basketball, ice hockey, and soccer. 

However, due to its design, players who are on the same team 

share the same PM score and are significantly affected by 

other players. For example, if an extremely skillful player is 

assigned to a team, they will enhance the values of the other 

players, and vice versa. The typical methods for solving this 

problem are the Adjusted Plus/Minus (APM) [4] and 

Regularized Adjusted Plus/Minus (RAPM) [5]. 

B. APM/RAPM  

The APM method [4] proposed is an improved PM method 

that performs a multiple regression analysis of Eq. (1) for a 

certain stint 𝑖 (a combination of 10 players, including both 

allies and enemies) and expresses the coefficient 

𝛽𝑗  corresponding to each player 𝑗 as his ability. 

 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗 + 𝜖𝑖

𝐾

𝑗=1

 (1)
 

The value of 𝑋𝑖𝑗 is 1 if a player of the own team is on the 

field, −1 if a player of the enemy team is not on the field, and 

0 if a player is not on the field; 𝑌𝑖 is the PM per possession of 

the own team, and 𝜖𝑖  is the error term. However, because 

APM is based on simple multiple regression, it is susceptible 

to overlearning; therefore, RAPM is proposed [5], which is 

based on ridge regression. 

By design, these methods are used to estimate the 

performance of individual players, and the results are easy to 

interpret. However, they have difficulty estimating the 

performance of lineups or player combinations, even if the 

players have interacted previously. Additionally, if these 

approaches are applied to scouting, the order of player 

recommendation remains the same for all teams since the 

information about the team does not affect the prediction 

results. 

C. Extended RAPM  

Extended RAPM [6] is a regression method that adds a 

lineup as an explanatory variable 𝑍𝑖𝑚  to RAPM, which 

performs regression only on the players, to measure lineup 

ability expressions and perform regression based on Eq. (2). 

 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗 +

𝐾

𝑗=1

∑ 𝛾𝑚𝑍𝑖𝑚 + 𝜖𝑖

𝐿

𝑚=1

 (2)
 

In the original paper, Eq. (2) is expressed as a matrix 

equation. 𝑍𝑖𝑚
 
is a variable with a value of 1 for its own lineup, 

−1 for the enemy lineup, and 0 otherwise. The explained 

variable 𝑌𝑖 is not the PM score but a performance score 

designed to consider plays other than those related directly to 

the score (rebounds, etc.), the details of which are shown in 

Table I.
  

However, as explained above, this method has difficulty to 

apply to completely unknown lineups because lineups 

themselves are added to the explanatory variables. Therefore, 

this is not suitable as a comparison method for this study.
 

D.
 

Factorization Machines 
 

Factorization Machines [7] are based on the factorization 

model, which allows for the extraction of interactions 

between all elements and the use of those interactions as 

parameters. As a result, FMs can be used for sparse datasets, 

making them useful in many applications, particularly in 

recommendation systems.
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Compared to polynomial models, which require N(N–1)/2 

parameters when considering the interaction of any two 

elements from a set of N elements, FMs can reduce the 

number of parameters to N at most. This reduction in 

parameters is expected to improve the generalization 

performance of the model. 

Furthermore, FMs can indirectly learn interactions for 

combinations that do not exist in the training dataset, which 

is not possible with other models. This capability allows FMs 

to perform learning on extremely sparse datasets [7]. 

E. DeepFM/xDeepFM 

Many DNN models with FM have been proposed, among 

which DeepFM [11] and its advanced version, xDeepFM, are 

the most promising models. DeepFM successfully improves 

accuracy using both low-order explicit interactions based on 

FM and high-order implicit interaction obtained by 

embedding data in the DNN. In addition, xDeepFM [10] uses 

a compressed interaction network (CIN), which is an 

architecture that explicitly learns higher-order features on a 

vector-by-vector basis in the FM architecture; this allows 

more explicit interactions to be used in learning. 

At the time this manuscript was written, xDeepFM is a 

general-purpose architecture that best matches our 

requirements, in our opinion; therefore, we constructed our 

model using this method. However, other similar methods 

can be used since the focus of this study is to demonstrate the 

effectiveness of integrating player interactions and individual 

player statistics. 

 

III. DATA 

In this study, we collected play-by-play (PbP) and 

boxscore data for every game in the EuroLeague [12] and 

EuroCup [13] from the 2016-2021 seasons. The raw data 

includes information on the number of teams, players, and 

games, which is presented in Table II under the "Raw Data" 

column. To create our experimental dataset, we added three 

unique identifiers: game_id, team_id, and player_id. The 

game_id is a string that includes five components separated 

by underscores (_): the names of the home and away teams, 

the final score of the home team, the final score of the away 

team, and the season in which the game was played. The 

team_id and player_id were randomly assigned to ensure 

uniqueness. It should be noted that the same player_id is used 

for a player even if they were a member of more than one 

team during the data period. The PbP and boxscore data are 

presented in Tables III and IV, respectively. 

However, Tables III and IV contain incorrect entries or do 

not provide some entries, which does not facilitate 

experimental preparation. Therefore, records in which 

game_id correspond to any of the following were excluded: 

 Records whose game_id exists only in either 

boxscore or PbP. 

 In boxscore, the total number of records with stater = 

true is not 10. 

 The number of records with play_type = IN does not 

match the number of records with play_type = OUT. 

 Records whose player_id is lost in the play_type = IN 

or OUT. 

 Play _type = OUT records that contain a player_id 

that is not currently in the field. 

 Play _type = IN records that contain a player_id that 

is already in the field. 

 

Next, the processing applied to each dataset is described. 

First, the number of possessions (Poss) for a stint is calculated 

using Eq. (3) [14]. 

 
𝑃𝑜𝑠𝑠＝𝐹𝑇𝐴 × 0.44 + 2𝑃𝐴 + 3𝑃𝐴 + 𝑇𝑂  (3) 

FTA, 2PA, and 3PA indicate the numbers of free throws, 

2-pt shots, and 3-pt shots attempted, respectively; and TO 

indicates the number of turnovers. 

Additionally, we computed the performance score (PScore) 

for each lineup based on Table I and the extended RAPM. 

Subsequently, we calculated the expected performance per 

possession (EPP) for each lineup using Eq. (4). 

 
𝐸𝑃𝑃 ＝ 𝑃𝑆𝑐𝑜𝑟𝑒/𝑃𝑜𝑠𝑠 (4)

 

Here, the variance of the EEP becomes extremely high 

when Poss is low, which is expected because the EPP is 

calculated per possession. As this will result in excessive 

noise in the training phase, we excluded the 50 Poss threshold 

from the dataset. The number of players and games after the 

above process is shown in Table II "Processed Data” column.  

 
TABLE I: PERFORMANCE SCORE OF EACH EVENT 

Value Events 

−1 Missed free throw, turnover, or defensive foul 

−0.5 Missed shot (two or three point shots) 

0.5 Assist 

1 Steal, offensive or defensive rebound, block, scored free-throw, or received foul 

2 Scored shot 

3 Scored three-pointer 

 

 
TABLE II: NUMBER OF TEAMS, PLAYERS, AND GAMES 

 Raw Data Processed Data 

Teams 65  

Players 1,772 938 

Games 2,757 2,639 
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TABLE III: EXAMPLE OF PLAY-BY-PLAY DATA 

Column Name Meaning Value example 

game_id ID of games ALBA Berlin_Arka Gdynia_82_68_2018-19 

play_number serial number of plays 12 

quarter Quarter number (1–4) 1 

team_id ID of each team 19 

marker_time Time (10:00–0:00) 09:41 

player_id ID of player 1077 

play_type Play type 3FGM, IN, OUT, etc. 

play_info Details of the play Three pointer (1/1–3 pt) 

dorsal Dorsal number of the player 3 

 

TABLE IV: EXAMPLE OF BOXSCORE DATA 

Column Name Meaning Value example 

game_id ID of games ALBA Berlin_Arka Gdynia_82_68_2018-19 
player_id ID of player 1077 

team_id ID of each team 19 

dorsal Dorsal number of the player 3 

first_name First name JOSH 

last_name Last name BOSTIC 

starter Starter member or not true 
min Time length on field 25:29 

pts Scored points 18 

f2g Success rate of 2-pt shots 2/5 
f3g Success rate of 2-pt shots 4/8 

ft Success rate of free throws 2/2 

rebounds_o Number of offensive rebounds 1 
rebounds_d Number of defensive rebounds 3 

rebounds_t Number of all rebounds 4 

ast Number of assists 2 
stl Number of steals 2 

to Number of turnovers 2 

blocks_f Number of blocks 0 
blocks_a Number of blocked 1 

fouls_c Number of commit fouls 3 

fouls_d Number of drawn fouls 2 
pir Match contribution rate 15 

PM Plus/Minus -8 

Next, based on the boxscore, we derived the annual 

statistics for each player in the EuroCup and EuroLeague. 

The statistics used, which are standard statistics used in 

basketball, are shown in Table Ⅴ. 

 
TABLE V: DETAILS OF USED STATISTICS 

Name Meaning  

2pt_ratio Annual success rate of 2-pt shots 

3pt_ratio Annual success rate of 3-pt shots 

ft_ratio Annual success rate of free throws 

rebounds_o Offensive rebounds per minute 

rebounds_d Defensive rebounds per minute 

rebounds_t All rebounds per minute 

ast Assists per minute 

stl Steals per minute 

to Turnovers per minute 

blocks_f Blocks per minute 

blocks_a Blocked per minute 

fouls_c Commit fouls per minute 

fouls_d Drawn fouls per minute 

 

IV. METHOD 

Fig. 2 presents an overview of the proposed framework. It 

is broadly categorized into a training phase for training 

models and a recommendation phase for performance 

estimation using trained models. Although the nature of the 

input data differs between the training and recommendation 

phases, the preprocessing is the same; hence, the processor is 

known as a common preprocessor. 

 
Fig.2. Overview of our proposed framework. 
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A. Common Preprocessor 

First, a One-hot Encoder is applied to each player (IDs) 

such that the input format is compatible with the FM. For 

example, when the lineup of player groups 1–10 comprises, 

1, 4, 7, 9, and 10, the data format will be sparse, as shown in 

Fig. 3. 

 

 
Fig. 3. Changes to sparse datasets by One-hot Encoder 

 

Next, we apply normalization to the statistics described in 

Table Ⅴ  and to the EPP as the explained variable. To 

eliminate the positional dependence of the input variables, we 

sorted each stat from the five individuals in the ascending 

order. The structure of the data input to the model is shown 

in Fig. 4. 

 

 
Fig. 4. Image of input data 

B. Training Phase 

The preprocessed dataset, consisting of actual lineups, was 

used to train the xDeepFM model which incorporates two 

primary architectures, namely FM and DNN. By applying 

factorization on the sparse dataset using the FM architecture, 

xDeepFM is expected to effectively extract player 

interactions. The DNN, on the other hand, was trained using 

the embedded representation of the sparse dataset (player IDs) 

and the dense dataset (player statistics). The final synthesis is 

expected to result in a model that exploits the advantages of 

both sparse and dense inputs, i.e., integrating individual 

player performance and their interactions. 

C. Recommendation Phase 

During this phase, the team's compatibility with its out-of-

team players was estimated by predicting the performance of 

a virtually generated unknown lineup. This was done by 

generating virtual lineups using four players from the team's 

roster and one player from the rosters of other teams. These 

virtual lineups were then preprocessed using a common 

preprocessor, and the performance of the lineup was 

predicted using the model trained in the training phase. The 

predicted scores were then used to rank the recommendations, 

with the idea that if a lineup performed well when paired with 

any player from the team, then those players are necessary for 

the team. 

V. EXPERIMENTS  

A. Known Lineup Prediction 

1) Experimental Design 

For the methods described in the previous section, we 

conducted an experiment to demonstrate their high accuracy 

in predicting known lineups. We performed a five-fold cross-

validation on the EuroCup and EuroLeague seasons from 

2016 to 2019 (the first four years of the dataset) to evaluate 

the accuracy of the method. We compared four models: ridge 

regression (ridge), which is the basis of RAPM; a nonlinear 

kernel support vector machine (SVM) as a nonlinear model; 

and models trained by xDeepFM using either the player IDs 

(sparse dataset) only or stats (dense dataset) only (named 

Sparse Only and Dense Only). Notably, the Dense Only 

model is similar to the DNN model as it does not have an 

input for the FM architecture. The Root Mean Square Error 

(RMSE) was used as the evaluation index, and the mean and 

standard deviation of each fold were reported. Ridge is 

different from RAPM as it performs learning on lineups 

instead of on stints, and stats are included in the explanatory 

variables but are employed as alternative methods to perform 

comparisons under the same conditions. In the training phase, 

the training error is weighted by its Poss for each lineup in 

both models, based on the concept of extended RAPM. The 

hyperparameter settings for the proposed and comparative 

models are presented in Table VI. 

 
TABLE VI: HYPERPARAMETERS FOR EACH MODEL 

Model Parameter 

Proposed model CIN layer size: (256, 128, 64) 
DNN hidden units: (128, 128) 

Embedding dimension: 4 

Ridge Regularization parameter:  

SVM Regularization parameter: C  

Kernel: Gaussian kernel 

 

2) Result 

The mean accuracy and standard deviation of each fold are 

listed in Table Ⅶ . Our proposed model showed superior 

accuracy compared to the other models, followed by the 

Dense Only and Sparse Only models. Although Dense Only 

shows that the accuracy was typically based on the individual 

player’s ability alone, the accuracy improved when the 

interaction between players was explicitly incorporated. 

Sparse Only indicated higher accuracy than the existing 

method, suggesting that each player’s performance is not 

independent, and the influence of each player is important for 

performance estimation. As the SVM results show, capturing 

interactions between players is challenging for simple non-

linear models. 

 
TABLE VII: RESULTS OF LINEUP PREDICTION 

Model Mean Std. 

Proposed Model 0.202 0.0271 
Ridge 0.372 0.0086 

SVM 0.284 0.0104 

Sparse Only 0.238 0.0107 

Dense Only 0.219 0.0237 

Unknown Lineup  0.215  

 

B. Unknown Lineup Prediction 

1) Experimental Design 

To validate the accuracy of our recommendations, we 

evaluated the predictions using an unknown lineup from the 

2020-2021 season as a virtual lineup. We used each model 

obtained from the cross-validation for the predictions and 

took the average of the predictions as the final result. 

However, to ensure consistency with the training phase, we 

used only the list of players who had played in the previous 

four years. Therefore, lineups with less than five players due 

to the absence of players in the 2020–2021 season were 

40

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023



  

excluded from the predictions. As a result, we predicted a 

total of 359 unknown lineups. 

2) Result 

“Unknown Lineup” in Table Ⅵ shows the estimation results. 

The RMSE of 0.215 implies slightly less accurate predictions 

for the unknown lineups compared to the known lineups, 

which had an RMSE of 0.202, although the difference is not 

significant. This factor is crucial to determine the validity of 

player recommendations, which is the focus of this study. 

However, in terms of the practicality of the recommendations, 

a more comprehensive discussion is necessary to determine 

whether they are suitable for the team’s characteristics. In the 

following section, we provide details of our recommendation 

experiment. 

C. Player Recommendation 

1) Experimental Design 

We conducted a player recommendation experiment using 

the learned model. First, virtual candidate lineups were 

generated based on the recommendation shown in Fig. 2. 

Based on four arbitrary players from each team’s roster 

season and one player from the candidate group (in this case, 

EuroCup and EuroLeague players other than those belonging 

to the team) for the 2021 season, 1,715,688 lineups were 

created. The model predicted the team performance for the 

generated candidate lineups and ranked the candidate players 

for each team. If there are N players in a team, each candidate 

player was given   results, the best of which was adopted 

as the candidate's performance. Similar to the unknown 

lineup estimation, the list of players was based on that of the 

previous four years, and the number of teams was limited to 

32. If a player plays for more than one team in a specified 

year, then the total stats among all teams were used. 

2) Result 

The randomness of the recommendation results obtained 

by each team was evaluated by calculating the Spearman's 

rank correlation coefficients between the recommendation 

results of every two teams, which describe the randomness of 

the entire order. This was shown in Fig. 5. To calculate the 

rank correlation, players belonging to one of the teams were 

excluded from the recommendation results. 

 

 
Fig. 5. Spearman’s rank correlations of every two teams’ 

recommendation results 

 

In general, we observed a low correlation value of 

approximately 0.5, suggesting that only some of the teams 

were composed of players expected to perform particularly 

well, which is crucial in the recommendation process. On the 

other hand, a high correlation value of approximately 0.8 was 

observed between certain teams. This may have occurred 

because, in those cases, the similar characteristics of the 

players in the two teams led to the players who complemented 

those teams being similar as well. 

Next, we compared the top results instead of the entire 

recommendations. This is because not all of the ranks are 

meaningful, and the results of the top ranks are of most 

interest when applied to actual scouting. In addition, the top 

results may be very similar, even if they are somewhat 

scattered overall. For example, if the top 20 results between 

two teams are perfectly matched, but the rankings of the other 

267 players are entirely random, the rank correlation 

coefficient will be very low, although the overlap between the 

top 20 players is naturally 20. It is also important to check for 

such distortion between the results of only the top-ranked 

players and the results as a whole. 

For this purpose, we plotted the relationship between the 

rank correlation coefficients among the recommended results 

and the number of overlaps among the top 20 players' results 

in Fig. 6. The correlation coefficient between the two is 0.535 

(p-value << 0.01), indicating a weak positive correlation, 

suggesting that there is a certain relationship between the 

variability of the overall results among the teams and the 

variability of the results when focusing on the top results. 

This implies that the proposed framework has the important 

property of avoiding competition among teams for scouting 

targets, which is significant in practice. 

 

 
Fig. 6. The relationship between rank correlations and overlap of the top 

20 players 

VI. CONCLUSION 

Overall, the proposed framework shows promising results 

in estimating the performance of known lineups and 

recommending players for unknown lineups. The integration 

of sparse lineup data and dense player statistics through an 

FM-based model appears to be effective in improving 

performance estimation accuracy. Furthermore, the observed 

variation in recommendation results suggests the potential for 

identifying players who may complement a team's existing 

players well, thereby avoiding competition with other teams 

for scouting targets.  

Future improvements could include considering 

performance-level differences among leagues and teams and 

incorporating uncertainties such as player growth and 
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deterioration. If widely adopted, the proposed system has the 

potential to make scouting more efficient and streamlined, 

increase players’ market mobility, and reduce mismatches 

between teams and players, ultimately improving the 

competition level and revitalizing the basketball industry. 
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