

Abstract—In this paper, we analyze the digital brains of

virtual assistants by reviewing their inner workings of learning

and thinking. We review the process for creating the digital

brains (knowledgebase and inference engine) by focusing on

knowledge acquisition (learning) and knowledge discovery

(thinking). We then attempt to extend the ability of virtual

assistants by allowing them to read and write. To read

documents conceptually in order to write abstractive

summaries, our system makes use of one of the world’s largest

knowledgebases and one of the most powerful inference engines.

The resultant AI system first uses natural language processing

techniques to extract syntactic structure of the documents and

then maps the words of the sentences and their parts of speech

into related concepts in the knowledgebase. It then uses the

inference engine to generalize and fuse concepts to form more

abstract concepts. The system then composes new sentences

based on the key concepts by linking subject concepts with their

related predicate concepts. The system has been implemented

and tested. The test results showed that the system can create

new sentences that include abstracted concepts not explicitly

mentioned in the original documents and that contain

information synthesized from different parts of the documents

to compose a summary.

Index Terms—knowledgebase, natural language processing,

knowledge engineering.

I. INTRODUCTION

Virtual or digital assistants (intelligent personal assistants)

have become commonplace in our homes, on our wrists, and

in our pockets. Examples include Amazon’s Alexa, Apple’s

Siri, Google Assistant, and Microsoft’s Cortana. The ability

to have nearly any query answered by simply speaking to a

device represents a powerful advancement in technology.

Virtual assistants do have their limitations; for instance, they

have trouble replying to questions with high levels of

ambiguity and nuance. In this paper, we begin by reviewing

the process for creating the digital brains (knowledgebase

and inference engine) of virtual assistants by focusing on

knowledge acquisition (learning) and knowledge discovery

(thinking).

We then attempt to extend the ability of virtual assistants

by allowing them to read and write. The ability to read,

understand, and write human languages requires not only

processing the given text data, but also requires

commonsense knowledge. The additional knowledge

required are encoded into computer programs and databases.

Programs for parsing, encoded with the knowledge of

grammar, read and analyze the given text data syntactically to

produce parts of speech. Knowledgebases, encoded with the

 Manuscript received March 18, 2023; revised

April 24, 2023.

 A. Clifton

is with

the Mathematics and Statistics Program, Louisiana

Tech University, Ruston, LA

71272

USA (e-mail: aclifton@latech.edu).

 B. Choi

is

with the Computer Science Program, Louisiana Tech

University, Ruston, LA 71272

USA (e-mail: pro@benchoi.org).

ontology of human knowledge, provide concepts that relate

words semantically to their meanings. Inference engines,

encoded with the knowledge of reasoning, deduce and

generate new concepts from the contents of the given text

documents and thus give rise to “understanding”. Programs

for writing, encoded with the knowledge of grammar, utilize

the resultant new concepts and the relationships between

concepts to compose new sentences.

The remainder of this paper is organized as follows.

Section II provides the reviews of the process for creating

digital brains. Section III provides the details of our project to

use digital brains for reading and writing. Section IV gives

the conclusion and outlines future research.

II. REVIEWING THE PROCESS FOR CREATING DIGITAL BRAINS

Digital brains must possess knowledge and abilities to

process the knowledge. From a knowledge engineering [1]

point of view, the process for creating digital brains involves

the process of creating the knowledgebases and the inference

engines. The choice of how to encode knowledge (knowledge

representation) is the key feature that effects both the

knowledgebases and the inference engines.

We first review using knowledge graphs as the structure

for storing and representing knowledge. More than a simple

data graph in which a collection of data is represented as

nodes and edges, a knowledge graph is enhanced with

representations of schema, identity, context, and rules [2].

There are various types of knowledge graphs including

Resource Description Framework (RDF), heterogenous

graphs, property graphs, and complex graphs [2]. The RDF

model was developed to capture information on the web and

is recommended by W3C. The underlying structure of an

RDF graph is subject-predicate-object triples arranged as a

directed edge-labeled graph. Property graphs allow

additional flexibility by incorporating labels on both nodes

and edges [2]. While the choice of representation affects the

process of thinking, it is possible to convert from RDF to

property graphs and vice versa [3]. We review how to create

the knowledgebase and the inference engines in the next two

subsections.

A. Knowledge Acquisition (Learning)

The process of learning is extracting knowledge from a

source and representing that knowledge in a usable format.

Knowledge can be extracted from structured data, text, and

images. Extraction methods include manual extraction by

human experts, as in the case of Cyc [4], fully automated

machine learning techniques, and most commonly, a

combination of the two.

The process of extracting knowledge from structured data

begins with schema mapping. A semantic schema is used to

define hierarchical classes of nodes and properties of edges.

Analyzing the Digital Brains of Virtual Assistants

21

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

doi: 10.18178/ijke.2023.9.2.140

*Correspondence: aclifton@latech.edu

Ann Clifton* and Ben Choi

Due to the semantic nature, when importing or combining

knowledge graphs, careful consideration must be made to

ensure a correct mapping between the existing schema and

the schema of the new source. There exist automated

techniques for suggesting these mappings, but they still

require human intervention [5]. In the case of RDF graphs,

International Resource Identifiers (standardized global

identifiers of entities on the Web) and “sameAs” links are

used for direct mapping [5].

Identity mapping is the next step in learning from

structured data and involves verifying whether two entities in

given knowledge graphs represent the same real-world entity.

As in the case of schema mapping, there is not a fully

automated process available for identity mapping, so human

intervention is required. The process of identity mapping is to

first block the data into a random forest then use active

learning to randomly select pairs from the two datasets, use

similarity functions to obtain features, and apply the learned

rules to new selected pairs and iterate. Once the process

terminates, a matching is proposed but must be verified by a

domain expert [2].

The process of extracting knowledge from text relies

heavily on Natural Language Processing for entity and

relation extraction as well as entity resolution. The extracted

entities will form the nodes of the knowledge graph while the

extracted relations form the edges (see Fig. 1) [6]. To

incorporate newly extracted knowledge to an existing

knowledge graph, entity resolution is performed. Knowledge

can also be extracted from unstructured data and relies on

machine learning algorithms [5].

Fig. 1. Overview of knowledge graph extraction from text [6]

In its push to add common sense reasoning to AI, Cycorp

used manual data extraction to construct its knowledge base

beginning in 1984 [7]. Since its inception, the Cyc project has

dedicated over a century of person-years to building its

knowledgebase [4]. The language used to express the Cyc

ontology is CycL which can be thought of as a full first-order

predicate calculus [8]. The Cyc knowledgebase (Fig. 2)

contains more than 3 million facts and rules [9, 10] and

currently it is the largest known knowledge base with a focus

on common sense [3]. The Cyc project is now considering

machine creation for knowledge acquisition since its

knowledgebase contains sufficient entities and predicates [9].

Wikidata’s knowledge graph is a more recent example

which also primarily used human curation for knowledge

acquisition [3]. In contrast, the Amazon Product Graph and

Microsoft Academic Graph relied more heavily on automated

methods [3]. Although the Amazon Product Graph and

Microsoft Academic Graph were able to leverage machine

creation, human intervention was still required to create

training data and perform verification [3].

Fig. 2. Overview of Cyc Knowledge Base Topic Map [7]

Google’s Assistant acquires knowledge from a variety of

sources including Google’s own knowledge graph, user

interactions, and external APIs. Google’s knowledge graph

was built from Wikipedia and Freebase which used an RDF

model [11].

B. Knowledge Discovery (Thinking)

“Thinking” (knowledge discovery) refers to the process

of reasoning over the knowledge with the goal of generating

new knowledge. When the knowledge is presented with

knowledge graphs, the graphs can be queried for existing

knowledge using SPARQL for RDF graphs or one of the

many property graph querying languages such as Cypher,

Gremlin, or G-CORE [2]. To generate new knowledge,

techniques for deductive and inductive reasoning are used.

Deductive reasoning is a consequence of logical

statements, but some conclusions can be drawn from the

hierarchical nature of semantic schemas (for example, the

subclass relationship) [2]. To perform deductive reasoning,

first define an ontology which provides a precise definition of

the terms within the domain of their use. The Web Ontology

Language (OWL) is a W3C recommended RDF compatible

ontology language. Ontology languages allow for the

abstraction of a knowledge graph into a domain graph that is

then combined with defined logical rules to form novel

entailments (new conclusions that can be represented as new

edges in the domain graph). OWL is defined under a No

Unique Name Assumption (NUNA) and an Open World

Assumption (OWA) which means that nodes in the

knowledge graph may represent the same entity in the

domain graph (NUNA) and that the domain graph may

include entailments not realized by the knowledge graph

provided no contradiction arises (OWA) [2]. Different

ontologies may be defined under different assumptions.

Inductive reasoning is the process of generalizing an

observed pattern. Inductive reasoning utilizes graph

algorithms such as path finding, centrality detection, and

community detection and ontology-based (or rule-based)

algorithms [2]. Machine learning algorithms are

implemented by first embedding the nodes and edges of the

knowledge graph as vectors while preserving as much of the

discrete structure as possible. Alternatively, machine learning

algorithms can be constructed around the graph structure as

in the case of Graph Neural Networks (GNNs) [2]. The

following are example use cases of graph algorithms.

22

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

Consider a knowledge graph that represents a friend

network. To find the set of friends of friends of Alice, begin

at the node “Alice” and traverse each edge with the “friend”

relation. The destination nodes will form the set of Alice’s

friends. Then, for each node in the set of Alice’s friends,

traverse each edge with the “friend” relation (do not traverse

edges that were traversed in the first step). The destination

nodes from the second edge traversal form the set of friends

of friends of Alice. See Fig. 3.

Fig. 3. The “friend of” path and the inferred “friend of friend” relation.

Fig. 4 represents a part of a knowledge graph containing

information on the city of San Francisco, California. By

traversing the “part of” edges, we can infer that San Francisco

is a city in the United States.

Fig. 4. Knowledge graph containing information on San Francisco with the

inferred “part of” edge.

Centrality is a measure of the degree of a node, that is, the

number of relations coming into and out of a particular node.

Ways of measuring centrality include (1) finding the nodes

with largest degree (the sum of the incoming and outgoing

edges), (2) determining all of the shortest paths and finding

the node that appears in the most such paths, (3) considering

only a subset of nodes and finding the node in the original

graph that is the shortest distance from all of the nodes in the

subset, and (4) finding the node with the largest number of

incoming edges [6].

A “community” in a graph refers to a group of connected

nodes, meaning that there is a path between every two nodes

in the community. In a directed graph, we say a set of nodes is

strongly connected if for every two nodes, u and v, there is a

directed path from u to v and a directed path from v to u. In

graph terminology, such a community is said to be a strong

component if the community is a maximal strongly

connected subdigraph [2]. Finding the strong components of

a directed graph begins by selecting a node and finding a

depth first search tree with root the chosen vertex. Then it is

determined how each edge not in the tree connects the nodes

of the directed graph. The process for finding communities in

undirected graphs is similar but has fewer possibilities for

edge behavior [2].

Algorithms for community detection that leverage the

information contained in a knowledge graph (versus a simple

graph) include label propagation and the idea of modularity

[2]. Label propagation begins by assigning a label (a

community, in this case) to each vertex. Then the label of

each vertex is updated based on the labels of its neighbors.

The algorithm terminates when each vertex is in a community

that is shared by most of its neighbors [5]. Modularity

algorithms such as the Louvain method successively compare

the number of relations between subsets of nodes to output a

partition of the nodes into communities with the greatest

density of relations [5].

To respond to user requests, intelligent personal assistants,

like Alexa, use a combination of natural language generation

and text-to-speech techniques. The natural language

generation component uses a combination of template-based

and machine learning-based techniques to generate the

response text. Then the text-to-speech techniques component

uses concatenative text-to-speech to convert the generated

text into speech by concatenating pre-recorded samples [12].

III. USING DIGITAL BRAIN FOR READING AND WRITING

We attempt to extend the ability of virtual assistants by

allowing them to read and write [13]. We make use of a

digital brain (cyc.com) that is one of the world’s largest

knowledgebases and one of the most powerful inference

engines to process documents conceptually to create

abstractive summaries. Our system uses both the syntactic

structure provided by the given documents and the

commonsense knowledge provided by the knowledgebase. It

performs deep syntactic analysis by using capabilities of

advanced natural language processing techniques. It uses Cyc

development platform as a source of background knowledge

(cyc.com). The Cyc development platform consists of the

world’s largest ontology of commonsense knowledge and a

reasoning engine that allows information comprehension and

abstraction. In addition, Cyc ontology serves as a backbone

for semantic analysis, knowledge generalization, and natural

language generation.

Our system conducts summarization process in three

principal stages: knowledge acquisition, knowledge

discovery, and knowledge representation (Fig. 5) [14]. The

knowledge acquisition stage derives syntactic structure of

each sentence of the input document and maps words and

their relations into Cyc knowledgebase. Next, the knowledge

discovery stage generalizes concepts upward in the Cyc

ontology and detects main topics covered in the text. Finally,

the knowledge representation stage composes new sentences

for some of the most significant concepts defined in main

topics. The syntactic structure of the newly created sentences

follows an enhanced subject-predicate-object model, where

adjective and adverb modifiers are used to produce more

complex and informative sentences.

We have implemented our proposed system that was tested

on various documents and webpages. The test results show

that our system is capable of identifying key concepts and

discovering main topics comprised in the original text,

generalizing new concepts not explicitly mentioned in the

text, and creating new sentences that contain information

synthesized from various parts of the text. The newly created

sentences have complex syntactic structures that enhance

subject-predicate-object triplets with adjective and adverb

modifiers. The sentence was created as the result of linked

key concepts. The linked concepts are then mapped back to

words to form the sentence.

During the knowledge acquisition step (Fig. 5), the

algorithm receives text documents as an input, performs

syntactic analysis, and maps the words with their syntactic

relationships into the Cyc knowledgebase. During the

23

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

knowledge discovery step, the system performs a

generalization of new concepts by propagating the concepts

that were mapped into Cyc knowledgebase by the knowledge

acquisition step. It also performs the task of the identification

of the main topics of the text based on the mapped and

generalized concepts. Finally, during the knowledge

representation step, the system generates new sentences

using knowledge derived from the input text documents and

the capabilities of the Cyc inference engine. These steps are

described in more detail in the following three subsections.

Knowledge Based System

Input:

document(s)

Cyc KB

Output:

summary

KNOWLEDGE

DISCOVERY

Abstract new concepts.

Identify main topics.

KNOWLEDGE

ACQUISITION

Extract syntactic structure.

Map words to Cyc concepts.

KNOWLEDGE

REPRESENTATION

Abstract new concepts.

Identify main subjects.

Create new sentences.

Fig. 5. System Workflow.

A. Knowledge Acquisition (Reading)

The knowledge acquisition step consists of two

subprocesses. The first subprocess extracts the syntactic

structures from the given documents (Fig. 6). This

subprocess serves as a data preprocessing and transformation

step. It normalizes raw text data and transforms it into

syntactic representation.

Input text

Separate text

into individual

sentences

Tokenize each

sentence

Lemmatize each

word

Assign part of

speech tag to

each word

Assign syntactic

dependency

relationships to

each word

Count

frequencies of

words and

relationships

Syntactic

representation

Fig. 6. Syntactic structure extraction.

The second subprocess maps words from syntactic

representation of the text to Cyc concepts (Fig. 7). Mapped

Cyc concepts are utilized for reasoning during subsequent

steps of the algorithm.

Map each

word to Cyc

concept

Assign word's

weight to Cyc

concept

Assign word's

relationship to

Cyc concept

Map word s

relationship

head to Cyc

concept

Syntactic

representaion

Mapped Cyc

concepts

Fig. 7. Mapping words to Cyc concepts.

B. Knowledge Discovery (Thinking)

The knowledge discovery step performs two subprocesses:

it abstracts new concepts and identifies main topics described

in the input text. New concepts abstraction subprocess (Fig. 8)

generalizes the information derived from the text. It finds the

ancestors of mapped Cyc concepts and assigns the

descendants’ propagated weight and syntactic dependency

relationships to the ancestors [15]. It is an important part of

the abstractive summarization process as it allows deriving

concepts that are not explicitly mentioned in the input text.

For example, concepts like “cat,” “tiger,” “jaguar,” and

“lion” are generalized into more abstract “feline” concept.

Add descendants

accumulated

weight and

relationships to

ancestor

Updated Cyc

concepts

Find number of

concept s

mapped

descendants

Find number of

all concept s

descendants

Update number

of descendants

and accumulated

weight scaled by

α

Mapped Cyc

concepts

Find ancestor for

each mapped

concept

Record ancestor-

descendant

relationship

Calculate

descendants

ratio

Fig. 8. New concepts abstraction.

The main topics identification subprocess (Fig. 9) detects

topics described in the text with an assumption that they are

represented by the most frequently used micro theories.

Micro theories form the basis of the knowledge organization

in Cyc ontology being the clusters of Cyc concepts and facts,

typically representing one specific domain of knowledge. For

example, #$BiologyMt is a micro theory containing

biological knowledge, and #$MathMt is a micro theory

containing concepts and facts describing the field of

mathematics. Each Cyc concept is defined within a micro

theory.

24

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

Mapped Cyc

concepts

Top-n micro

theories

Find defining

micro theory for

each mapped

Cyc concept

Count

frequencies of

the discovered

micro theories

Pick top-n micro

theories with the

highest

frequencies

Fig. 9. Main topics identification.

C. Knowledge Representation (Writing)

The knowledge representation utilizes powerful

capabilities of the Cyc inference engine to generate new

sentences based on the information discovered during

knowledge acquisition and knowledge discovery steps. This

step uses mapped and generalized Cyc concepts, their

syntactic dependency relationships, and the most frequent

micro theories as inputs. The knowledge representation step

consists of two subprocesses: candidate subject discovery

and new sentence generation. The candidate subject

discovery subprocess (Fig. 10) identifies significant subject

concepts out of all the mapped and generalized Cyc concepts

[14].

Calculate

subjectivity ratio

Find number of all

relationships for

each Cyc concept

in each micro

theory

Find number of

subject

relationships for

each Cyc concept

in each micro

theory

Top-n micro

theories

Top-n subject

concepts

Pick top-n

subjects with the

highest

subjectivity rank

Calculate

subjectivity rank

Fig. 10. Candidate subject discovery.

The new sentences generation subprocess (Fig. 11)

composes new sentences for each of the identified candidate

subject concepts. The generated sentences serve as a final

summary of the input text.

Convert each subject

Cyc concept to its

natural language

representation

Derive adjective

with highest subject-

adjective

relationship weight

for each subject

Summary sentences

Top-n subject

concepts

Convert each

adjective Cyc

concept to its natural

language

representation

Derive predicates

with highest subject-

predicate

relationship weights

for each subject

Convert each

predicate Cyc

concept to its natural

language

representation

Derive adverb with

highest predicate-

adverb relationship

weights for each

predicate

Convert each adverb

Cyc concept to its

natural language

representation

Derive objects with

highest product of

subject-object and

predicate-object

relationships weights

for each predicate

Convert each object

Cyc concept to its

natural language

representation

Derive adjective

with highest object-

adjective

relationship weight

for each object

Compose new

sentence using

subject, subject-

adjective, predicate,

predicate-adverb,

object, object-

adjective elements

Convert each

adjective Cyc

concept to its natural

language

representation

Fig. 11. New sentence generation.

IV. CONCLUSION AND FUTURE RESEARCH

Now your virtual assistants can read documents and create

summaries for you. We first analyze the digital brains of

virtual assistants by reviewing their inner workings of

learning and thinking. We then attempt to extend the ability

of virtual assistants by allowing them to read and write. The

task of producing an abstractive summary of a given text is

25

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

considered challenging for humans and even more so for

machines. Employing the semantic features and the syntactic

structure of the text together with the world’s largest

knowledgebase shows great potential in creating abstractive

summaries. Although our system can generate new

abstractive sentences, there is much more research potential

to further develop such a knowledge-based system to

compose new sentences as summary.

Future research potential includes creating a better digital

brain that can make use of the World Wide Web as a

knowledgebase. This is in fact the purpose of the first part of

this paper, which reviews current systems for creating digital

brains. Any virtual assistant is limited by the functionality

and performance of the underlying commonsense

knowledgebase. Our system is currently as knowledgeable as

the capabilities of the Cyc knowledgebase that is currently

the largest ontology of commonsense knowledge. For future

improvement, a system could use the information derived

from the whole World Wide Web as a domain knowledge.

This would possess challenging research questions such as

information inconsistency and sense disambiguation. In

addition, a robust inference engine would be required to

process the information correctly and in a timely fashion.

We reviewed using formal models (such as graphs and

logics) to encode knowledge. Another approach is to use

neural networks to encode knowledge. Using a type of neural

network called Generative Pre-trained Transformer (GPT)

has achieved remarkable results. However, this neural

network approach has its drawbacks such as the inability to

acquire new knowledge after the completion of the training

and the difficulties for anyone to understand or modify the

underlying connections of the neural networks. A better

digital brain might require a combination of neural networks

and formal models (including graphs, logics, and automata

[16, 17]). Much research remains to be done for building a

better digital brain.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

BC developed the main concept of the paper and wrote the

second part of the paper; AC wrote the first part of the paper.

Both authors approved the final version.

REFERENCES

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

26

International Journal of Knowledge Engineering, Vol. 9, No. 2, 2023

[1] B. Choi, “Knowledge engineering the web,” International Journal of

Machine Learning and Computing, vol. 11, no. 1, pp. 68-76, 2021.

[2] A. Hogan, et al., “Knowledge graphs,” ACM Computing Surveys

(CSUR), vol. 54, no. 4, pp. 1–37, 2021.

[3] V. Chaudhri, et al., “Knowledge graphs: Introduction, history and,
perspectives,” AI Magazine, vol. 43, no. 1, pp. 17–29, 2022.

[4] D. B Lenat. “CYC: A large-scale investment in knowledge
infrastructure,” in Proc. Communications of the ACM, vol. 38, no. 11,

1995, pp. 33–38.

[5] V. K. Chaudhri, CS520: Knowledge Graphs Seminar (Spring 2021).
YouTube. url:

https://www.youtube.com/playlist?list=PLDhh0lALedc5paY4N3NRZ
3j_ui9foL7Qc.

[6] I. Melnyk, P. Dognin, and P. Das, “Knowledge graph generation from

text,” In: arXiv preprint arXiv:2211.10511 (2022).
[7] D. B Lenat and R. V. Guha, “Building large knowledge-based systems;

representation and inference in the Cyc project,” Addison-Wesley
Longman Publishing Co., Inc., 1989.

[8] CYC. White Paper: Technology Overview. Tech. rep.

[9] C. Matuszek, et al., “Searching for common sense: Populating cyc
from the web,” in Proc. UMBC Computer Science and Electrical

Engineering Department Collection, 2005.
[10] M. J. Witbrock, et al., “Knowledge begets knowledge: Steps towards

assisted knowledge acquisition in cyc,” in Proc. AAAI Spring

Symposium: Knowledge Collection from Volunteer Contributors, 2005,
pp. 99–105.

[11] N. Chah, “OK Google, what is your ontology? Or: exploring freebase
classification to understand Google’s knowledge graph,” In: arXiv

preprint arXiv:1805.03885 (2018).

[12] S. Karlapati, et al., “Prosodic representation learning and contextual
sampling for neural text-to-speech,” in Proc. ICASSP 2021, 2021. url:

https://www.amazon.science/publications/prosodic-representation-lea
rning-and-contextual-samplingfor-neural-text-to-speech.

[13] B. Choi, A. Timofeyev, and A. Bobunova, “Teaching computers to

read, understand, and write human languages,” in Proc. Languages and
Migration in a Globalized World, pp. 92-103, Dec. 2020.

[14] A. Timofeyev and B. Choi, “Knowledge based system for composing
sentences to summarize documents,” Knowledge Discovery,

Knowledge Engineering and Knowledge Management, pp. 164-183,

2019.
[15] B. Choi and X. M. Huang, “Creating New Sentences to Summarize

Documents,” in Proc. the 10th IASTED International Conference on
Artificial Intelligence and Application (AIA 2010), 2010, pp. 458-463.

[16] B. Choi, “Automata for learning sequential tasks,” New Generation

Computing: Computing Paradigms and Computational Intelligence,
vol. 16, no. 1, pp. 23-54, 1998.

[17] B. Choi, “Inductive inference by using information compression,”
Computational Intelligence, 2023.

https://creativecommons.org/licenses/by/4.0/

