
  



Abstract—In this paper, we analyze the digital brains of 

virtual assistants by reviewing their inner workings of learning 

and thinking. We review the process for creating the digital 

brains (knowledgebase and inference engine) by focusing on 

knowledge acquisition (learning) and knowledge discovery 

(thinking). We then attempt to extend the ability of virtual 

assistants by allowing them to read and write. To read 

documents conceptually in order to write abstractive 

summaries, our system makes use of one of the world’s largest 

knowledgebases and one of the most powerful inference engines. 

The resultant AI system first uses natural language processing 

techniques to extract syntactic structure of the documents and 

then maps the words of the sentences and their parts of speech 

into related concepts in the knowledgebase. It then uses the 

inference engine to generalize and fuse concepts to form more 

abstract concepts. The system then composes new sentences 

based on the key concepts by linking subject concepts with their 

related predicate concepts. The system has been implemented 

and tested. The test results showed that the system can create 

new sentences that include abstracted concepts not explicitly 

mentioned in the original documents and that contain 

information synthesized from different parts of the documents 

to compose a summary. 

 
Index Terms—knowledgebase, natural language processing, 

knowledge engineering.  

 

I. INTRODUCTION 

Virtual or digital assistants (intelligent personal assistants) 

have become commonplace in our homes, on our wrists, and 

in our pockets. Examples include Amazon’s Alexa, Apple’s 

Siri, Google Assistant, and Microsoft’s Cortana. The ability 

to have nearly any query answered by simply speaking to a 

device represents a powerful advancement in technology. 

Virtual assistants do have their limitations; for instance, they 

have trouble replying to questions with high levels of 

ambiguity and nuance. In this paper, we begin by reviewing 

the process for creating the digital brains (knowledgebase 

and inference engine) of virtual assistants by focusing on 

knowledge acquisition (learning) and knowledge discovery 

(thinking).  

We then attempt to extend the ability of virtual assistants 

by allowing them to read and write. The ability to read, 

understand, and write human languages requires not only 

processing the given text data, but also requires 

commonsense knowledge. The additional knowledge 

required are encoded into computer programs and databases. 

Programs for parsing, encoded with the knowledge of 

grammar, read and analyze the given text data syntactically to 

produce parts of speech. Knowledgebases, encoded with the 
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ontology of human knowledge, provide concepts that relate 

words semantically to their meanings. Inference engines, 

encoded with the knowledge of reasoning, deduce and 

generate new concepts from the contents of the given text 

documents and thus give rise to “understanding”. Programs 

for writing, encoded with the knowledge of grammar, utilize 

the resultant new concepts and the relationships between 

concepts to compose new sentences. 

The remainder of this paper is organized as follows. 

Section II provides the reviews of the process for creating 

digital brains. Section III provides the details of our project to 

use digital brains for reading and writing. Section IV gives 

the conclusion and outlines future research. 

 

II. REVIEWING THE PROCESS FOR CREATING DIGITAL BRAINS 

Digital brains must possess knowledge and abilities to 

process the knowledge. From a knowledge engineering [1] 

point of view, the process for creating digital brains involves 

the process of creating the knowledgebases and the inference 

engines. The choice of how to encode knowledge (knowledge 

representation) is the key feature that effects both the 

knowledgebases and the inference engines.  

We first review using knowledge graphs as the structure 

for storing and representing knowledge. More than a simple 

data graph in which a collection of data is represented as 

nodes and edges, a knowledge graph is enhanced with 

representations of schema, identity, context, and rules [2]. 

There are various types of knowledge graphs including 

Resource Description Framework (RDF), heterogenous 

graphs, property graphs, and complex graphs [2]. The RDF 

model was developed to capture information on the web and 

is recommended by W3C. The underlying structure of an 

RDF graph is subject-predicate-object triples arranged as a 

directed edge-labeled graph. Property graphs allow 

additional flexibility by incorporating labels on both nodes 

and edges [2]. While the choice of representation affects the 

process of thinking, it is possible to convert from RDF to 

property graphs and vice versa [3]. We review how to create 

the knowledgebase and the inference engines in the next two 

subsections.  

A. Knowledge Acquisition (Learning) 

The process of learning is extracting knowledge from a 

source and representing that knowledge in a usable format.  

Knowledge can be extracted from structured data, text, and 

images. Extraction methods include manual extraction by 

human experts, as in the case of Cyc [4], fully automated 

machine learning techniques, and most commonly, a 

combination of the two. 

The process of extracting knowledge from structured data 

begins with schema mapping. A semantic schema is used to 

define hierarchical classes of nodes and properties of edges. 
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Due to the semantic nature, when importing or combining 

knowledge graphs, careful consideration must be made to 

ensure a correct mapping between the existing schema and 

the schema of the new source. There exist automated 

techniques for suggesting these mappings, but they still 

require human intervention [5]. In the case of RDF graphs, 

International Resource Identifiers (standardized global 

identifiers of entities on the Web) and “sameAs” links are 

used for direct mapping [5]. 

Identity mapping is the next step in learning from 

structured data and involves verifying whether two entities in 

given knowledge graphs represent the same real-world entity.  

As in the case of schema mapping, there is not a fully 

automated process available for identity mapping, so human 

intervention is required. The process of identity mapping is to 

first block the data into a random forest then use active 

learning to randomly select pairs from the two datasets, use 

similarity functions to obtain features, and apply the learned 

rules to new selected pairs and iterate. Once the process 

terminates, a matching is proposed but must be verified by a 

domain expert [2]. 

The process of extracting knowledge from text relies 

heavily on Natural Language Processing for entity and 

relation extraction as well as entity resolution. The extracted 

entities will form the nodes of the knowledge graph while the 

extracted relations form the edges (see Fig. 1) [6]. To 

incorporate newly extracted knowledge to an existing 

knowledge graph, entity resolution is performed. Knowledge 

can also be extracted from unstructured data and relies on 

machine learning algorithms [5]. 

 
Fig. 1. Overview of knowledge graph extraction from text [6] 

 

In its push to add common sense reasoning to AI, Cycorp 

used manual data extraction to construct its knowledge base 

beginning in 1984 [7]. Since its inception, the Cyc project has 

dedicated over a century of person-years to building its 

knowledgebase [4]. The language used to express the Cyc 

ontology is CycL which can be thought of as a full first-order 

predicate calculus [8]. The Cyc knowledgebase (Fig. 2) 

contains more than 3 million facts and rules [9, 10] and 

currently it is the largest known knowledge base with a focus 

on common sense [3]. The Cyc project is now considering 

machine creation for knowledge acquisition since its 

knowledgebase contains sufficient entities and predicates [9]. 

Wikidata’s knowledge graph is a more recent example 

which also primarily used human curation for knowledge 

acquisition [3]. In contrast, the Amazon Product Graph and 

Microsoft Academic Graph relied more heavily on automated 

methods [3]. Although the Amazon Product Graph and 

Microsoft Academic Graph were able to leverage machine 

creation, human intervention was still required to create 

training data and perform verification [3]. 

 
Fig. 2. Overview of Cyc Knowledge Base Topic Map [7] 

 

Google’s Assistant acquires knowledge from a variety of 

sources including Google’s own knowledge graph, user 

interactions, and external APIs. Google’s knowledge graph 

was built from Wikipedia and Freebase which used an RDF 

model [11]. 

B. Knowledge Discovery (Thinking) 

“Thinking” (knowledge discovery) refers to the process 

of reasoning over the knowledge with the goal of generating 

new knowledge. When the knowledge is presented with 

knowledge graphs, the graphs can be queried for existing 

knowledge using SPARQL for RDF graphs or one of the 

many property graph querying languages such as Cypher, 

Gremlin, or G-CORE [2]. To generate new knowledge, 

techniques for deductive and inductive reasoning are used. 

Deductive reasoning is a consequence of logical 

statements, but some conclusions can be drawn from the 

hierarchical nature of semantic schemas (for example, the 

subclass relationship) [2]. To perform deductive reasoning, 

first define an ontology which provides a precise definition of 

the terms within the domain of their use.  The Web Ontology 

Language (OWL) is a W3C recommended RDF compatible 

ontology language.  Ontology languages allow for the 

abstraction of a knowledge graph into a domain graph that is 

then combined with defined logical rules to form novel 

entailments (new conclusions that can be represented as new 

edges in the domain graph). OWL is defined under a No 

Unique Name Assumption (NUNA) and an Open World 

Assumption (OWA) which means that nodes in the 

knowledge graph may represent the same entity in the 

domain graph (NUNA) and that the domain graph may 

include entailments not realized by the knowledge graph 

provided no contradiction arises (OWA) [2]. Different 

ontologies may be defined under different assumptions. 

Inductive reasoning is the process of generalizing an 

observed pattern. Inductive reasoning utilizes graph 

algorithms such as path finding, centrality detection, and 

community detection and ontology-based (or rule-based) 

algorithms [2]. Machine learning algorithms are 

implemented by first embedding the nodes and edges of the 

knowledge graph as vectors while preserving as much of the 

discrete structure as possible. Alternatively, machine learning 

algorithms can be constructed around the graph structure as 

in the case of Graph Neural Networks (GNNs) [2]. The 

following are example use cases of graph algorithms. 
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Consider a knowledge graph that represents a friend 

network. To find the set of friends of friends of Alice, begin 

at the node “Alice” and traverse each edge with the “friend” 

relation. The destination nodes will form the set of Alice’s 

friends. Then, for each node in the set of Alice’s friends, 

traverse each edge with the “friend” relation (do not traverse 

edges that were traversed in the first step). The destination 

nodes from the second edge traversal form the set of friends 

of friends of Alice. See Fig. 3. 

 
Fig. 3. The “friend of” path and the inferred “friend of friend” relation. 

 

Fig. 4 represents a part of a knowledge graph containing 

information on the city of San Francisco, California. By 

traversing the “part of” edges, we can infer that San Francisco 

is a city in the United States. 

 

 
Fig. 4. Knowledge graph containing information on San Francisco with the 

inferred “part of” edge. 
 

Centrality is a measure of the degree of a node, that is, the 

number of relations coming into and out of a particular node. 

Ways of measuring centrality include (1) finding the nodes 

with largest degree (the sum of the incoming and outgoing 

edges), (2) determining all of the shortest paths and finding 

the node that appears in the most such paths, (3) considering 

only a subset of nodes and finding the node in the original 

graph that is the shortest distance from all of the nodes in the 

subset, and (4) finding the node with the largest number of 

incoming edges [6]. 

A “community” in a graph refers to a group of connected 

nodes, meaning that there is a path between every two nodes 

in the community. In a directed graph, we say a set of nodes is 

strongly connected if for every two nodes, u and v, there is a 

directed path from u to v and a directed path from v to u.  In 

graph terminology, such a community is said to be a strong 

component if the community is a maximal strongly 

connected subdigraph [2]. Finding the strong components of 

a directed graph begins by selecting a node and finding a 

depth first search tree with root the chosen vertex. Then it is 

determined how each edge not in the tree connects the nodes 

of the directed graph. The process for finding communities in 

undirected graphs is similar but has fewer possibilities for 

edge behavior [2]. 

Algorithms for community detection that leverage the 

information contained in a knowledge graph (versus a simple 

graph) include label propagation and the idea of modularity 

[2]. Label propagation begins by assigning a label (a 

community, in this case) to each vertex. Then the label of 

each vertex is updated based on the labels of its neighbors. 

The algorithm terminates when each vertex is in a community 

that is shared by most of its neighbors [5]. Modularity 

algorithms such as the Louvain method successively compare 

the number of relations between subsets of nodes to output a 

partition of the nodes into communities with the greatest 

density of relations [5].  

To respond to user requests, intelligent personal assistants, 

like Alexa, use a combination of natural language generation 

and text-to-speech techniques. The natural language 

generation component uses a combination of template-based 

and machine learning-based techniques to generate the 

response text. Then the text-to-speech techniques component 

uses concatenative text-to-speech to convert the generated 

text into speech by concatenating pre-recorded samples [12]. 

III. USING DIGITAL BRAIN FOR READING AND WRITING 

We attempt to extend the ability of virtual assistants by 

allowing them to read and write [13]. We make use of a 

digital brain (cyc.com) that is one of the world’s largest 

knowledgebases and one of the most powerful inference 

engines to process documents conceptually to create 

abstractive summaries. Our system uses both the syntactic 

structure provided by the given documents and the 

commonsense knowledge provided by the knowledgebase. It 

performs deep syntactic analysis by using capabilities of 

advanced natural language processing techniques. It uses Cyc 

development platform as a source of background knowledge 

(cyc.com). The Cyc development platform consists of the 

world’s largest ontology of commonsense knowledge and a 

reasoning engine that allows information comprehension and 

abstraction. In addition, Cyc ontology serves as a backbone 

for semantic analysis, knowledge generalization, and natural 

language generation. 

Our system conducts summarization process in three 

principal stages: knowledge acquisition, knowledge 

discovery, and knowledge representation (Fig. 5) [14]. The 

knowledge acquisition stage derives syntactic structure of 

each sentence of the input document and maps words and 

their relations into Cyc knowledgebase. Next, the knowledge 

discovery stage generalizes concepts upward in the Cyc 

ontology and detects main topics covered in the text. Finally, 

the knowledge representation stage composes new sentences 

for some of the most significant concepts defined in main 

topics. The syntactic structure of the newly created sentences 

follows an enhanced subject-predicate-object model, where 

adjective and adverb modifiers are used to produce more 

complex and informative sentences.  

We have implemented our proposed system that was tested 

on various documents and webpages. The test results show 

that our system is capable of identifying key concepts and 

discovering main topics comprised in the original text, 

generalizing new concepts not explicitly mentioned in the 

text, and creating new sentences that contain information 

synthesized from various parts of the text. The newly created 

sentences have complex syntactic structures that enhance 

subject-predicate-object triplets with adjective and adverb 

modifiers. The sentence was created as the result of linked 

key concepts. The linked concepts are then mapped back to 

words to form the sentence.  

During the knowledge acquisition step (Fig. 5), the 

algorithm receives text documents as an input, performs 

syntactic analysis, and maps the words with their syntactic 

relationships into the Cyc knowledgebase. During the 
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knowledge discovery step, the system performs a 

generalization of new concepts by propagating the concepts 

that were mapped into Cyc knowledgebase by the knowledge 

acquisition step. It also performs the task of the identification 

of the main topics of the text based on the mapped and 

generalized concepts. Finally, during the knowledge 

representation step, the system generates new sentences 

using knowledge derived from the input text documents and 

the capabilities of the Cyc inference engine. These steps are 

described in more detail in the following three subsections. 

Knowledge Based System

Input: 

document(s)

                                                         

Cyc KB

Output: 

summary

KNOWLEDGE 

DISCOVERY

Abstract new concepts.

Identify main topics.

KNOWLEDGE 

ACQUISITION

Extract syntactic structure.

Map words to Cyc concepts.

KNOWLEDGE 

REPRESENTATION

Abstract new concepts.

 
Identify main subjects.

Create new sentences.

 
Fig. 5. System Workflow. 

 

A. Knowledge Acquisition (Reading) 

The knowledge acquisition step consists of two 

subprocesses. The first subprocess extracts the syntactic 

structures from the given documents (Fig. 6). This 

subprocess serves as a data preprocessing and transformation 

step. It normalizes raw text data and transforms it into 

syntactic representation. 

Input text

Separate text 

into individual 

sentences

Tokenize each 

sentence

Lemmatize each 

word

Assign part of 

speech tag to 

each word

Assign syntactic 

dependency 

relationships to 

each word

Count 

frequencies of 

words and 

relationships

Syntactic 

representation

 

Fig. 6. Syntactic structure extraction. 

 

 

 

The second subprocess maps words from syntactic 

representation of the text to Cyc concepts (Fig. 7). Mapped 

Cyc concepts are utilized for reasoning during subsequent 

steps of the algorithm. 

Map each 

word to Cyc 

concept

Assign word's 

weight to Cyc 

concept

Assign word's 

relationship to 

Cyc concept

Map word s 

relationship 

head to Cyc 

concept

Syntactic 

representaion

Mapped Cyc 

concepts

 
Fig. 7. Mapping words to Cyc concepts. 

 

B. Knowledge Discovery (Thinking) 

The knowledge discovery step performs two subprocesses: 

it abstracts new concepts and identifies main topics described 

in the input text. New concepts abstraction subprocess (Fig. 8) 

generalizes the information derived from the text. It finds the 

ancestors of mapped Cyc concepts and assigns the 

descendants’ propagated weight and syntactic dependency 

relationships to the ancestors [15]. It is an important part of 

the abstractive summarization process as it allows deriving 

concepts that are not explicitly mentioned in the input text. 

For example, concepts like “cat,” “tiger,” “jaguar,” and 

“lion” are generalized into more abstract “feline” concept. 

 

Add descendants 

accumulated 

weight and 

relationships to 

ancestor

Updated Cyc 

concepts

Find number of 

concept s 

mapped 

descendants

Find number of 

all concept s 

descendants

Update number 

of descendants 

and accumulated 

weight scaled by 

α 

Mapped Cyc 

concepts

Find ancestor for 

each mapped 

concept

Record ancestor-

descendant 

relationship

Calculate 

descendants  

ratio

 
Fig. 8. New concepts abstraction. 

 

The main topics identification subprocess (Fig. 9) detects 

topics described in the text with an assumption that they are 

represented by the most frequently used micro theories. 

Micro theories form the basis of the knowledge organization 

in Cyc ontology being the clusters of Cyc concepts and facts, 

typically representing one specific domain of knowledge. For 

example, #$BiologyMt is a micro theory containing 

biological knowledge, and #$MathMt is a micro theory 

containing concepts and facts describing the field of 

mathematics. Each Cyc concept is defined within a micro 

theory. 
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Mapped Cyc 

concepts

Top-n micro 

theories

Find defining 

micro theory for 

each mapped 

Cyc concept

Count 

frequencies of 

the discovered 

micro theories

Pick top-n micro 

theories with the 

highest 

frequencies

 
Fig. 9. Main topics identification. 

 

C. Knowledge Representation (Writing) 

The knowledge representation utilizes powerful 

capabilities of the Cyc inference engine to generate new 

sentences based on the information discovered during 

knowledge acquisition and knowledge discovery steps. This 

step uses mapped and generalized Cyc concepts, their 

syntactic dependency relationships, and the most frequent 

micro theories as inputs. The knowledge representation step 

consists of two subprocesses: candidate subject discovery 

and new sentence generation. The candidate subject 

discovery subprocess (Fig. 10) identifies significant subject 

concepts out of all the mapped and generalized Cyc concepts 

[14]. 

Calculate 

subjectivity ratio

Find number of all 

relationships for 

each Cyc concept 

in each micro 

theory

Find number of 

subject 

relationships for 

each Cyc concept 

in each micro 

theory

Top-n micro 

theories

Top-n subject 

concepts

Pick top-n 

subjects with the 

highest 

subjectivity rank

Calculate 

subjectivity rank

 
Fig. 10. Candidate subject discovery. 

 

The new sentences generation subprocess (Fig. 11) 

composes new sentences for each of the identified candidate 

subject concepts. The generated sentences serve as a final 

summary of the input text. 

Convert each subject 

Cyc concept to its 

natural language 

representation 

Derive adjective 

with highest subject-

adjective 

relationship weight 

for each subject

Summary sentences

Top-n subject 

concepts

Convert each 

adjective Cyc 

concept to its natural 

language 

representation

Derive predicates 

with highest subject-

predicate 

relationship weights 

for each subject

Convert each 

predicate Cyc 

concept to its natural 

language 

representation 

Derive adverb with 

highest predicate-

adverb relationship 

weights for each 

predicate

Convert each adverb 

Cyc concept to its 

natural language 

representation 

Derive objects with 

highest product of 

subject-object and 

predicate-object 

relationships weights 

for each predicate

Convert each object 

Cyc concept to its 

natural language 

representation 

Derive adjective 

with highest object-

adjective 

relationship weight 

for each object

Compose new 

sentence using 

subject, subject-

adjective, predicate, 

predicate-adverb, 

object, object-

adjective elements

Convert each 

adjective Cyc 

concept to its natural 

language 

representation 

 
Fig. 11. New sentence generation. 

 

IV. CONCLUSION AND FUTURE RESEARCH 

Now your virtual assistants can read documents and create 

summaries for you. We first analyze the digital brains of 

virtual assistants by reviewing their inner workings of 

learning and thinking. We then attempt to extend the ability 

of virtual assistants by allowing them to read and write. The 

task of producing an abstractive summary of a given text is 
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considered challenging for humans and even more so for 

machines. Employing the semantic features and the syntactic 

structure of the text together with the world’s largest 

knowledgebase shows great potential in creating abstractive 

summaries. Although our system can generate new 

abstractive sentences, there is much more research potential 

to further develop such a knowledge-based system to 

compose new sentences as summary. 

Future research potential includes creating a better digital 

brain that can make use of the World Wide Web as a 

knowledgebase. This is in fact the purpose of the first part of 

this paper, which reviews current systems for creating digital 

brains. Any virtual assistant is limited by the functionality 

and performance of the underlying commonsense 

knowledgebase. Our system is currently as knowledgeable as 

the capabilities of the Cyc knowledgebase that is currently 

the largest ontology of commonsense knowledge. For future 

improvement, a system could use the information derived 

from the whole World Wide Web as a domain knowledge. 

This would possess challenging research questions such as 

information inconsistency and sense disambiguation. In 

addition, a robust inference engine would be required to 

process the information correctly and in a timely fashion. 

We reviewed using formal models (such as graphs and 

logics) to encode knowledge.  Another approach is to use 

neural networks to encode knowledge.  Using a type of neural 

network called Generative Pre-trained Transformer (GPT) 

has achieved remarkable results. However, this neural 

network approach has its drawbacks such as the inability to 

acquire new knowledge after the completion of the training 

and the difficulties for anyone to understand or modify the 

underlying connections of the neural networks. A better 

digital brain might require a combination of neural networks 

and formal models (including graphs, logics, and automata 

[16, 17]). Much research remains to be done for building a 

better digital brain. 
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