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Abstract—The failure of traditional clustering methods on 

high-dimensional data has been a thorny problem. Therefore, 

we propose a simple but effective mean shift feature weighted 

deformation method (WDNS) to calculate the density value of 

high-dimensional data points by learning the weights of the 

features. The neighborhood search is then carried out using the 

density center in the decision diagram as the starting point, 

and the points of the same cluster are merged to finally 

complete the clustering. The experimental results show that the 

algorithm has higher clustering accuracy than the six existing 

clustering algorithms. In addition, it has the outstanding 

feature of automatic parameter setting, which is not available 

in its peers. In summary, this work can improve the state-of-

the-art of clustering algorithms. 

Index Terms—Density clustering, Mean shift, High-

dimension, Neighborhood, Coalescing. 

I. INTRODUCTION

With the development of big data in the Internet of 

Things, the rapidly increasing volume of data places greater 

demands on the speed and accuracy of data processing. 

Clustering is an unsupervised machine learning algorithm [1] 

that can mine the hidden patterns in the data itself and has a 

wide range of applications in e-commerce [2], smart 

manufacturing, geographic information, biogenetics, etc. 
Some popular paradigms in clustering include center-based 

approaches such as K-means [3] and its variants [4], 

hierarchical clustering[5]–[7], spectral clustering [8] [9], 

density-based methods [10], convex clustering [11], kernel 

clustering [12], model-based frequentist approaches [13] 

and Bayesian methods [14]. 

The majority of the algorithms previously described 

taking the number of clusters (k) as input by default. 

However, 1) k might not be known in advance for data from 

the actual world. A sizable community of relevant scholars 

has been drawn to the long-standing open challenge of 
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determining k from the dataset itself. Other than that, 2) we 

also face the challenge of extracting human-readable and 

useful information content from a data set with hundreds of 

dimensions. 

Researchers have used the mean shift (MS) paradigm 

[15] to automatically determine the number of clusters and

to learn different aspects of the feature space. Mean shift has

been utilized in the past for automated feature space

grouping, object tracking, and mode finding. There is a

wealth of research on clustering high-dimensional data,

including algorithms based on data depth [16], bi-clustering

[11], dimensionality reduction [17], and subspace clustering

[18]. However, the majority of these techniques need

expensive computations. Weighted k-means [19] and Sparse

k-means [20] have established themselves as benchmark

algorithms for learning efficient feature representations of

such high-dimensional data while clustering [21]. These

techniques lose their attractiveness, though, to practitioners

who may have never dealt with data previously and want to

determine the number of clusters in an unsupervised way.

They also need k as input. In this paper, our purpose is to

develop a weighted fuzzy mean drift-based feature weight

estimation, an algorithm that automatically finds valid data

features to represent high-dimensional data while preserving

its computational cost. To achieve this, we introduce a

vector of feature weights [22] to learn the importance of

each feature when smoothing the data. The resulting

iterations yield elegant and simple algorithms with closed-

form updates. The weight update scheme follows the idea

that features with higher intra-cluster variance contribute

less to discovering the clustering structure of the data. The

data density is obtained from the feature weight vector,

which in turn performs neighborhood search clustering to

obtain the final clusters without the need to set them in

advance.

The main contributions of this paper can be summarized 

as follows: 

1) We introduce the weighted fuzzy mean shift (WFMS)

formula [23], a simple formula that effectively filters out 

insignificant features from the data. 

2) We propose a neighborhood search clustering method

with an adaptive neighborhood. The neighborhood radius of 

each dataset is only related to the density of data points, 

which can be automatically calculated, thus avoiding 

manual settings. 

3) Through detailed experimental analysis, we

demonstrate the effectiveness of our proposed Weighted 

Density Neighborhood Search algorithm (WDNS) on 

simulated and real data against state-of-the-art clustering 

techniques. 
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Fig. 1. Schematic of the proposed WDNS framework. 

 

II. METHOD 

In this section, we give the framework module for the 

Weighted Density Neighborhood Search algorithm: a 

high-dimensional mean drift algorithm is introduced into the 

calculation of the density to obtain the dimensional weight 

density; clustering is performed by searching and merging 

within the neighborhood of the data to automatically obtain 

the corresponding number of clusters without prior setting. 

We give some important concepts, especially the definition 

of density. In it, outlier detection, backbone identification, 

and density definition depend on the notion of Eps (the 

cutoff distance) and γ (the density threshold). Throughout 

this paper, all definitions are based on dataset D={p1, p2,…, 

pn}, containing d dimensions, where pi, i{1, 2, ..., n}, is a 

point in D. Np (μ, Σ) denotes the variate normal distribution 

with mean μ and dispersion matrix Σ. 

A. Preliminaries 

Mean Shift (MS) is a non-parametric method based on 

density gradient ascent that finds the target position and 

achieves target tracking by iterative operations. Also, it is 

possible to find all dense regions of data points based on a 

sliding window algorithm. That is, it aims to locate the 

centroids of each cluster, which is done by updating the 

candidate points of the centroids to the mean value of the 

points within the sliding window. These candidate windows 

are then filtered in the post-processing stage to eliminate 

near-duplicates, resulting in a final set of centroids and their 

corresponding groups. 
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M(p): Offset of the mean iteration. 

Sh: A region of high-dimensional spheres of radius h with 

p as the center. 

k: number of points contained in the range of Sh. 

pi: points contained in the range of Sh. 

Centre update: (moves the center points in the direction  

of the vector of offset means) 
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In 2014, Alex and Alessandro [24] proposed a new 

clustering algorithm. All centers of each cluster are selected 

from the samples in the dataset. As with the mean-shift 

method, the cluster centers are defined as local maxima of 

the data point density. However, unlike the mean-drift 

method, the procedure does not require embedding the data 

in a vector space and explicitly maximizing the density field 

of each data point. 

 

 

Fig. 2. A decision graph of dataset “path-based”. 

 

The algorithm has assumptions that neighbors surround 

cluster centers with lower local density, and they are at a 

relatively large distance from any points with a higher local 

density. For each data point i, we compute two quantities: its 

local density ρi and its distance δi from points of higher 

density. Both quantities depend only on the distances 

between data points, which are assumed to satisfy the 

triangular inequality. 

For point i in dataset D, if ρi is not the largest, then δi is 

the minimum distance between i and other points with a 

higher density than i. 

 

 
{ }           :i ij i jMin d j  =   

(3) 

If ρi is the largest, δi is the maximum distance between i 

and other points in D. 

Let us use the megalopolis as an analogy to explain the 

distance δ as Fig. 3. Megalopolis is composed of several 

large or small cities, and a cluster consists of many samples. 

The central cities of megalopolis are like the density centers 

of clusters, and city size can be likened to ρ, the density of 

samples. 
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Fig. 3. Urban distribution in some megalopolis of China and USA 

 

In order to become the central metropolis of a 

megalopolis, the city must be large enough and far enough 

away from other larger cities. Shanghai and New York are 

the central cities of their megalopolis, and there are also 

many big cities around them, such as Hangzhou and 

Philadelphia. Because they are adjacent to larger cities, 

Hangzhou and Philadelphia cannot become the central cities 

of the megalopolis. However, cities like Wuhan and 

Jacksonville, comparable in size but far removed from 

Shanghai and New York, have built megalopolis around 

themselves. Therefore, the distance from other larger cities 

becomes the key to becoming a metropolis. For samples in 

clustering, megalopolis distance δ is the key to being a 

cluster center as well. 

Dataset “path-bases” is embedded in a two-dimensional 

space where the x-coordinate represents ρi and the y-

coordinate represents δi, as shown in Fig. 2. We call this 

representation a Decision Graph. It can be utilized for 

selecting centers of clusters with the advantages of 

simplicity, intuitiveness, and accuracy. 

 

 

 

Fig. 4. Processes of neighborhood searching. 

 
3 selected density centers in a decision graph                     Density centers                                                   Clustering result 

(a) The process of clustering when we select just 3 density centers in the decision graph, α= 1.5, β= 9, and γ= 1.32. 

   
11 selected density centers in a decision graph                   Density centers                                                  Clustering result 

(b) The process of clustering when we select 11 density centers in the decision graph, α= 1.5, β= 2.6, and γ= 1.32. 

 
30+ selected density centers in a decision graph                Density centers                                                 Clustering result  

(c) The process of clustering when we select 30+ density centers in the decision graph, α= 1.5, β= 1.5, and γ= 1.32. 

Fig. 5. The robustness of the algorithm in choosing density centers. In dataset Path-based1, we use three different methods of (a), (b), and (c) to select 
density centers on the decision graph. For each operation, such as the operation of selecting 3 density centers in (a), density centers, which are selected in 

the box, are shown in the second graph with red color, while the others are blue, and the clustering result is shown in the third graph. 
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B. Formulation 

We will use a similar update rule as in MS (equation (1-

2)). However, instead of the usual Euclidean distance, we 

will use the weighted distance ‖ ‖w. The update rule for 

the data points is given by, 
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The feature weights are updated as follows: 
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where: 
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A non-parametric density for point i is calculated as: 
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In this paper, the end condition of the iteration isd =0. 

The density value calculated atd is the weighted density of 

the data points in the multidimensional data set, 

neighborhood searching of density centers is performed in 

the next step. 

Density center: points in D satisfying the following 

conditions belong to a set of density centers Dc: 

 

 Dc ={i | δi ≥ α, ρi ≥ β, and iD} (9) 

One of the crucial elements in our clustering procedure 

is the selection of density centers, where α and β are two 

thresholds, which are parameters determined by a decision 

graph. If they were poorly chosen, clustering accuracy 

would suffer, maybe even failing altogether. As density 

centers, we here choose the places with big δ and ρ. This 

point is more away from other dense spots the larger δ, 

making it more likely to develop as a clustering center. ρ of 

a density center must also be sufficiently large; if not, it is 

most likely to be a noise point. Contrary to DPC, the 

centers we choose are not clustering centers. Therefore, we 

don't require exact density centers. Instead, we only need to 

specify their range approximately, and the inside points can 

be later elected as density centers. 

Neighborhood search is a method for looking for points 

within a hypersphere whose radius is determined by the 

amount of data available, and where all of the points are 

grouped into the same cluster. A clustering technique uses it 

as a recursive procedure. 

Another critical phase of a clustering process is 

coalescing via neighborhood search, as seen in Fig. 4. The 

chosen density centers are then organized in terms of 

density. Second, the neighborhood search begins at the 

location with the highest density, and all of its neighbors 

are grouped as one cluster. Third, until no other neighbors 

are discovered, this cluster is expanded by including the 

vicinity of the combined points. We, therefore, have the 

first cluster. Once all density centers have been identified, 

the next density center is chosen to coalesce the remaining 

rest points for another cluster. A point is considered noise if 

it is not merged into any clusters. 

Merging points by searching the neighborhood of 

density centers, which brings great robustness to it. We take 

the dataset “Path-based1”, a synthetic data set, as an 

example. We use three different methods of (a), (b) and (c) 

to select density centers on a decision graph (Fig. 5). For 

each operation, such as the operation of selecting 3 density 

centers in Fig. 5 (a), the density centers, as selected in the 

box, are shown in the second graph in red while the others 

are in blue, and the clustering result is shown in the third 

graph. We can see that the three methods lead to the same 

clustering result. Thus, algorithm has great flexibility in 

selecting density centers. In order to ensure the accuracy of 

clustering, it is appropriate to select more density centers. 

However, the operating speed is slightly reduced. 

C. Convergence Analysis 

Our proposed weight update scheme can be 

considered as a sum of density. Thus, the objective 

function is given by  
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(10) 

It is strictly monotonically increasing, it can be proved 

that the iteration process converges, and it can be deduced 

that: 
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Using a second-order Taylor Expansion at �̅�, we get 
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If 𝑝 = 𝑝𝑡, we can get 
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Because 𝑓(�̅�) > 𝑓(𝑝𝑡), so 
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So, ∇2𝑓(𝑝𝑡) is a positive definite, which is contrary to 
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being a positive semidefinite matrix. Then, 𝑓(𝑝𝑡) 𝑡 = 1,2 …  and strictly monotonically increasing. 

 

 
Ground truth                                           WDNS                                         K-means                                             DBSCAN 

Fig. 6. Results of neighborhood searching. 

D. Time Complexity Analysis 

The time complexity of WNDS mainly consists of the 

dimensional weight density calculation part and 

neighborhood search clustering part. The time complexity 

of the first part is O(2n2ds), where s denotes the number of 

iterations in this part. The neighborhood search clustering 

part includes selecting density centers decided by density 

calculation, whose time complexity is O(dn2), and 

neighborhood searching, whose complexity is O(dnm), 

where m is the number of points as i’s neighbors. Therefore, 

the time complexity of WNDS is O(2n2ds+dn2) since m≪n. 

E. Weighted Density Neighborhood Search Algorithm 

Create a density dictionary with i and its density 

for dij in Euclidean distance matrix 
 find max dij 

end 

for I, j in Density dictionary 
 if ρi< ρj: 

  δi = min(dij) 

 else 
  δi = max (dij) 

end 

for i in D 
 if δi> α and ρi> β 

  Density centers← i 

end 

for i in D 

 if ρi> γ 

  Core points← i 
 else 

  Noise points← i 

end 

for i in Core points 

 for j in D 

  if dij < d 

   Set(neighborhood of i)← j 
 end 

end 

Density centers ranged by ρ 
for i in Density centers 

 list= neighborhood of i 

 for j in list 
  if j in core points 

   j goto cluster i 

 end 

 list=list1 

 if list is disposed all 

  break 

end 

III. EXPERIMENTAL RESULTS 

We compared WDNS with classical and excellent 

clustering algorithms and verified the accuracy and 

adaptability of WDNS through experiments. Two synthetic 

datasets and eight UCI real datasets were selected. The 

synthetic and UCI datasets are numerical datasets 

consisting of multidimensional attributes. All experiments 

were performed on a laptop with 64-bit Windows, core i5 

CPU, and 16 GB RAM running Python 3.7. 

A. Artificial Dataset Analysis 

In this part, we generated two artificial datasets, the first 

one with 300 points and 22 dimensions, called Spherical, 

which consists of three clusters of 100 points each. 

spherical cluster structure is fully contained in the first two 

features, and the remaining 20 features are generated 

independently from the standard normal distribution 

without cluster information. The second one has 500 points 

and 12 dimensions, called Stripes, which consists of five 

clusters, cluster structure is fully contained in the first two 

features too, rest are generated independently as well. Figs. 

4 show the benchmarked results of the three algorithms on 

the artificial datasets respectively. The first subfigure in 

each row is a dataset label, and the dots with different 

colors mean that they belong to different clusters. The 

second to fourth column figures are the results of WDNS, 

K-means [4], and DBSCAN [10], respectively. 

B. Applications for the Face Clustering 

The ORL Database has 40 distinct individuals, each 

Algorithm WDNS: (D, α, β, γ) 

Input: A dataset D containing n samples. 

α, β: These two thresholds are used to select δ and ρ. 

γ: The threshold of selecting core points. 
Initialization: ω0= [1,1,…,1] 

Output: Density-based clusters. 

repeat 

 for i j in D 

  dij=‖𝑝𝑖 − 𝑝𝑗‖
𝜔0 (refer to Equation 6) 

 end 

 Calculate d (refer to Equation 8) 

 If d≠0  

  update 𝑝𝑖
𝑡(refer to Equation 4) 

  update 𝜔𝑖
𝑡 (refer to Equation 5) 

  D=Dt 
 else  

  break 

for i in D 
 Calculate ρi (refer to Equation 7) 

S
p

h
erical  

S
trip

es 
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with 10 different images. For these individuals, the images 

are taken at different time and with different lighting, facial 

expressions (open/closed eyes, smiling/not smiling), and  

 

Fig. 7. ORL face dataset 

 
Fig. 8. Weight matrix 

 
Fig. 9. ORL dataset cluster result. 

facial details (glasses/no glasses). All the images are 

taken against a dark homogeneous background with the 

individuals in an upright, frontal position (with tolerance 

for some side movement). Each image has 92× 112 pixels, 

and each pixel has a gray value of 0-256. With each pixel 

as the feature, each image has 10304 dimensions as in Fig. 

7, and the input of the algorithm is 400 vectors with 10304-

dimensions.  

Through iteration, the weight matrix obtained is shown 

in Fig. 8, with 10304 attributes, and the weight of each 

attribute is between 0.0006 and 0.0013. The darker the 

color in the figure, the higher the weight of the attribute. It 

can be seen that the outer circle contour and the weight of 

the facial features in the image are relatively large, 

indicating that these attributes carry more information. In 

the subsequent density calculation and neighborhood search, 

the noisy attributes and irrelevant attributes can be 

eliminated by filtering the weight matrix, which improves 

the robustness of the algorithm and makes the clustering 

result more accurate. 

The clustering results are shown in Fig. 9. Faces in the 

same blue box belong to the same cluster, and the rest 

images unmarked do not belong to any cluster. 

C. Comparison against Base Clusterings 

After obtaining its remarkable clustering effect on 

synthetic datasets, we compare it with other state-of-the-

art traditional clustering algorithms, including DBSCAN, 

K-means, DPC, FCAN, CNN, FCM-VMF[25], and 

niMM[26]. Table I lists the description of ten multi-

dimensional datasets, whose dimensions range from 36 

to 3231961. Each dataset contains a different number of 

samples and classes, with strong typicality and 

universality. 

TABEL I.   UCI DATASETS 

Datasets features classes samples 

Satimage 36 6 6435 

Arrhythmia 249 16 452 

M-feat 240 10 2000 

Hill_Valley 100 2 606 

Urban land cover 506 9 148 

Parkinson's Disease 754 2 756 

Asian Religious and Biblical 

Texts 
8265 8 590 

Arcene 10000 2 900 

Dorothea 100000 2 1950 

URL Reputation 3231961 2 2396130 

 

Satimage dataset consists of multi-spectral values of 

pixels in 3x3 neighborhoods for each satellite image. M-

feat dataset is a collection of handwritten numbers 

containing “0-9”. In Hill-Valley dataset, each record 

represents 100 points on a two-dimensional graph. The 

Urban Land Cover dataset contains training and testing data 

to classify a high-resolution aerial image into nine urban 

land cover types. The Parkinson’s Disease Classification 

dataset has 754 attributes and 756 instances. Most of the 

sacred texts in Asian Religious and Biblical Texts were 

collected from Project Gutenberg. Three mass spectrometry 

datasets constitute Arcene dataset to obtain sufficient 

training and test data. The Dorothea dataset is a collection 

of drug discovery data. The URL Reputation dataset is a 

120-day anonymized subset of the URL data. 

From Table II and Fig. 10, all other algorithms have 

some defects except WDNS in cluster accuracy. WDNS has 

obvious advantages in the NMI index, which exceeds its 

comparison algorithm to a large extent. The calculation of 

ARI and RI are similar, so there is a certain convergence in 

the clustering accuracy of these datasets. Note that for 

Arrhythmia, K-means and DPC perform poorly on ARI and 

RI metrics because this dataset is nonlinear. The Asian 

Religious and Biblical Texts are quite difficult, and the 

performance of FCM-VMF, CNN, DPC, and niMM are all 

disappointing. Arcene is just the opposite, these algorithms 

all perform about the same, probably related to the fact that 

the dataset has fewer categories. For the rest of the datasets, 

each algorithm has its strengths and weaknesses. So, a 
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statistical test for the comparison in Table Ⅱ is carried out 

utilizing nonparametric testing for multiple comparisons to 

confirm the advantage of WDNS.  

The Friedman test, a nonparametric alternative to 

repeated-measures ANOVA, is frequently used to assess the 

overall effectiveness of k algorithms on N datasets.  

 

Fig. 10. Clustering accuracy of WDNS compared with other algorithms on UCI datasets. 

TABEL II. THE CLUSTERING PERFORMANCE FOR UCI DATASETS (THE BEST SCORES IN EACH ROW ARE HIGHLIGHTED IN BOLD) 

Datasets Methods WDNS DPC K-means FCAN CNN FCM-VMF niMM 

Satimage 

NMI 83.5 82.0 81.0 82.5 80.6 79.1 81.6 

ARI 84.2 84.0 82.2 83 82.5 81.4 83.5 

RI 77 73.5 75.5 75.7 76.5 72.5 74.6 

Arrhythmia  

NMI 80.4 66.8 75.6 76.0 60.5 71.1 73.5 

ARI 80.2 61.8 62.6 78.2 71.7 68.6 78.6 

RI 67.4 12.8 13.5 39.1 65.2 35.6 63.5 

M-feat  

NMI 83.5 69.7 75.6 66.3 73.9 67.3 68.9 

ARI 85.6 84.6 73.5 80.5 84 74.7 71.5 

RI 75.5 73.5 72.4 48.2 64 71.2 68.7 

Hill_Valley  

NMI 97.5 81.3 85.6 86.1 82.6 78.2 73.6 

ARI 62.3 48.6 55.6 60.6 54.1 63.4 61.8 

RI 55.7 52.4 52.4 55.7 55.7 67.4 59.6 

Urban land cover  

NMI 87.3 84.1 82.4 82.6 80.6 73.5 85.7 

ARI 85.6 68.3 74.5 80.3 80.4 65.3 74.5 

RI 84.6 80.6 82.4 86.2 84.3 63.3 73.2 

Parkinson's Disease  

NMI 96.5 82.8 83.6 92.5 88.5 89.3 83.2 

ARI 94.5 83.5 89.8 93.4 86.8 85.6 78.6 

RI 85.5 81.5 82.8 85.5 71.1 75.6 76.5 

Asian Religious and Biblical Texts  

NMI 80.5 69.5 76.3 78.6 65.2 63.8 71.5 

ARI 77.9 60.6 64.6 61 64.4 60.5 68.4 

RI 71.2 50.5 51.8 57.6 64.4 62.4 70.1 

Arcene  

NMI 90 90 90 90 90 90 90 

ARI 90 80 90 90 80 80 80 

RI 90 90 90 90 90 90 80 

Dorothea 

NMI 76.4 70.3 70.6 69.8 56.4 63.5 57.8 

ARI 88.7 78.7 87.5 87.5 83.7 76.8 62.5 

RI 86.2 66.2 82.5 82.5 72.5 68.6 75.6 

URL Reputation 

NMI 75 70 72 70 71 70 70 

ARI 84 80 80 70 70 70 70 

RI 75 75 70 70 67 68 63 

TABEL III. RANKS AND P-VALUES OF THE COMPARED ALGORITHMS FOR THE BENCHMARK DATASETS 

 WDNS DPC K-means FCAN CNN FCM-VMF niMM 

Satimage 1 5 6 2 4 7 3 

Arrhythmia  1 7 6 4 3 5 2 
M-feat  1 2 4 7 3 5 6 

Hill_Valley  1 7 5 3 6 2 4 

Urban land cover  1 6 4 2 3 7 5 

Parkinson's Disease  1 5 3 2 6 4 7 

Asian Religious and Biblical Texts 1 7 5 3 4 6 2 

Arcene  1 4 1 1 4 4 7 
Dorothea 1 4 2 3 5 6 7 

URL Reputation 1 2 3 4 5 5 7 

Average rank (R) 1 4.9 3.9 3.1 4.3 5.1 5 
z  2.07 1.64 1.31 1.81 2.15 2.11 

P-values  9.58367E-07 9.61927E-05 0.001935206 1.70798E-05 3.39653E-07 5.73303E-07 

Critical values  0.017 0.010 0.008 0.013 0.050 0.025 

 

 2
2 212 ( 1)

( 1) 4
F j

j

N k k
R

k k


 +
= − 

+  
  

(18) 
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Rj is the average rank of the algorithm, 𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗
𝑖 . 

We can find F(0.05)[7,10] =3.135 in Friedman test critical 

value table for a smaller number of algorithms and data sets 

like our experiment. Based on each dataset's average ranks 

for three performance metrics (Table Ⅲ), we get 
𝜒𝐹

2=15.7 >3.135. Therefore, the null hypothesis of the test 

can be rejected at the significance level of 0.05. It is clear 

that the clustering capabilities of the seven techniques 

greatly. 

 ( 1)
( )

6
i j

k k
z R R

N

+
= −  (19) 

where the Average rank (R) is the rank of the compared 

peer, we use WDNS as the control algorithm, P-value could 

be computed through normal approximations. Let p1, p2, …, 

pk-1 be the P-value sorted in ascending order. where pk-1 is 

the largest P-value. Each pi corresponds to hypothesis Hi. 

Starting from i=1, hypotheses Hi is rejected when pi < α/(k-

i). Using α=0.05, Table Ⅲ shows the sorted P-values and 

their critical values. As all P-values are less than their 

corresponding critical values, all hypotheses are rejected, 

indicating that WDNS outperformed other algorithms with 

statistical significance. 

IV. DISCUSSIONS 

The WDNS algorithm proposed in this paper has two 

contributions. Firstly, we introduce a weighted fuzzy mean 

shift (WFMS) formulation which can effectively filter out 

insignificant features from the data and thus obtain an 

accurate weighted density calculation method. Secondly, a 

clustering method based on neighborhood search is 

proposed, in which the selected density centers are used as 

the starting point for neighborhood search, and the core 

points are searched in their neighborhood until there are no 

core points in the neighborhood. A detailed experimental 

analysis of simulated and real data shows that WDNS is 

particularly useful for high-dimensional data with multiple 

clusters. 
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